Spatial and Temporal Variability of the North Atlantic Eddy Field From Two Kilometric‐Resolution Ocean Models

International audience Ocean circulation is dominated by turbulent geostrophic eddy fields with typical scales ranging from 10 to 300 km. At mesoscales (>50 km), the size of eddy structures varies regionally following the Rossby radius of deformation. The variability of the scale of smaller eddie...

Full description

Bibliographic Details
Published in:Journal of Geophysical Research: Oceans
Main Authors: Ajayi, Adekunle, Le Sommer, Julien, Chassignet, Eric, Molines, Jean‐marc, Xu, Xiaobiao, Albert, Aurelie, Cosme, Emmanuel
Other Authors: Institut des Géosciences de l’Environnement (IGE), Institut de Recherche pour le Développement (IRD)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP ), Université Grenoble Alpes (UGA), ANR-17-CE01-0009,BOOST-SWOT,Vers des produits de la circulation océanique de surface à la résolution kilométrique : exploitation de la future mission altimétrique SWOT(2017)
Format: Article in Journal/Newspaper
Language:English
Published: HAL CCSD 2020
Subjects:
Online Access:https://hal.science/hal-03084224
https://hal.science/hal-03084224/document
https://hal.science/hal-03084224/file/2019JC015827.pdf
https://doi.org/10.1029/2019JC015827
id ftinsu:oai:HAL:hal-03084224v1
record_format openpolar
spelling ftinsu:oai:HAL:hal-03084224v1 2024-04-28T08:29:50+00:00 Spatial and Temporal Variability of the North Atlantic Eddy Field From Two Kilometric‐Resolution Ocean Models Ajayi, Adekunle Le Sommer, Julien Chassignet, Eric Molines, Jean‐marc Xu, Xiaobiao Albert, Aurelie Cosme, Emmanuel Institut des Géosciences de l’Environnement (IGE) Institut de Recherche pour le Développement (IRD)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP ) Université Grenoble Alpes (UGA) ANR-17-CE01-0009,BOOST-SWOT,Vers des produits de la circulation océanique de surface à la résolution kilométrique : exploitation de la future mission altimétrique SWOT(2017) 2020-05 https://hal.science/hal-03084224 https://hal.science/hal-03084224/document https://hal.science/hal-03084224/file/2019JC015827.pdf https://doi.org/10.1029/2019JC015827 en eng HAL CCSD Wiley-Blackwell info:eu-repo/semantics/altIdentifier/doi/10.1029/2019JC015827 hal-03084224 https://hal.science/hal-03084224 https://hal.science/hal-03084224/document https://hal.science/hal-03084224/file/2019JC015827.pdf doi:10.1029/2019JC015827 http://creativecommons.org/licenses/by-nd/ info:eu-repo/semantics/OpenAccess ISSN: 2169-9275 EISSN: 2169-9291 Journal of Geophysical Research. Oceans https://hal.science/hal-03084224 Journal of Geophysical Research. Oceans, 2020, 125 (5), &#x27E8;10.1029/2019JC015827&#x27E9; [SDU.STU.OC]Sciences of the Universe [physics]/Earth Sciences/Oceanography info:eu-repo/semantics/article Journal articles 2020 ftinsu https://doi.org/10.1029/2019JC015827 2024-04-05T00:39:09Z International audience Ocean circulation is dominated by turbulent geostrophic eddy fields with typical scales ranging from 10 to 300 km. At mesoscales (>50 km), the size of eddy structures varies regionally following the Rossby radius of deformation. The variability of the scale of smaller eddies is not well known due to the limitations in existing numerical simulations and satellite capability. Nevertheless, it is well established that oceanic flows (<50 km) generally exhibit strong seasonality. In this study, we present a basin‐scale analysis of coherent structures down to 10 km in the North Atlantic Ocean using two submesoscale‐permitting ocean models, a NEMO‐based North Atlantic simulation with a horizontal resolution of 1/60 (NATL60) and an HYCOM‐based Atlantic simulation with a horizontal resolution of 1/50 (HYCOM50). We investigate the spatial and temporal variability of the scale of eddy structures with a particular focus on eddies with scales of 10 to 100 km, and examine the impact of the seasonality of submesoscale energy on the seasonality and distribution of coherent structures in the North Atlantic. Our results show an overall good agreement between the two models in terms of surface wave number spectra and seasonal variability. The key findings of the paper are that (i) the mean size of ocean eddies show strong seasonality; (ii) this seasonality is associated with an increased population of submesoscale eddies (10–50 km) in winter; and (iii) the net release of available potential energy associated with mixed layer instability is responsible for the emergence of the increased population of submesoscale eddies in wintertime. Article in Journal/Newspaper North Atlantic Institut national des sciences de l'Univers: HAL-INSU Journal of Geophysical Research: Oceans 125 5
institution Open Polar
collection Institut national des sciences de l'Univers: HAL-INSU
op_collection_id ftinsu
language English
topic [SDU.STU.OC]Sciences of the Universe [physics]/Earth Sciences/Oceanography
spellingShingle [SDU.STU.OC]Sciences of the Universe [physics]/Earth Sciences/Oceanography
Ajayi, Adekunle
Le Sommer, Julien
Chassignet, Eric
Molines, Jean‐marc
Xu, Xiaobiao
Albert, Aurelie
Cosme, Emmanuel
Spatial and Temporal Variability of the North Atlantic Eddy Field From Two Kilometric‐Resolution Ocean Models
topic_facet [SDU.STU.OC]Sciences of the Universe [physics]/Earth Sciences/Oceanography
description International audience Ocean circulation is dominated by turbulent geostrophic eddy fields with typical scales ranging from 10 to 300 km. At mesoscales (>50 km), the size of eddy structures varies regionally following the Rossby radius of deformation. The variability of the scale of smaller eddies is not well known due to the limitations in existing numerical simulations and satellite capability. Nevertheless, it is well established that oceanic flows (<50 km) generally exhibit strong seasonality. In this study, we present a basin‐scale analysis of coherent structures down to 10 km in the North Atlantic Ocean using two submesoscale‐permitting ocean models, a NEMO‐based North Atlantic simulation with a horizontal resolution of 1/60 (NATL60) and an HYCOM‐based Atlantic simulation with a horizontal resolution of 1/50 (HYCOM50). We investigate the spatial and temporal variability of the scale of eddy structures with a particular focus on eddies with scales of 10 to 100 km, and examine the impact of the seasonality of submesoscale energy on the seasonality and distribution of coherent structures in the North Atlantic. Our results show an overall good agreement between the two models in terms of surface wave number spectra and seasonal variability. The key findings of the paper are that (i) the mean size of ocean eddies show strong seasonality; (ii) this seasonality is associated with an increased population of submesoscale eddies (10–50 km) in winter; and (iii) the net release of available potential energy associated with mixed layer instability is responsible for the emergence of the increased population of submesoscale eddies in wintertime.
author2 Institut des Géosciences de l’Environnement (IGE)
Institut de Recherche pour le Développement (IRD)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )
Université Grenoble Alpes (UGA)
ANR-17-CE01-0009,BOOST-SWOT,Vers des produits de la circulation océanique de surface à la résolution kilométrique : exploitation de la future mission altimétrique SWOT(2017)
format Article in Journal/Newspaper
author Ajayi, Adekunle
Le Sommer, Julien
Chassignet, Eric
Molines, Jean‐marc
Xu, Xiaobiao
Albert, Aurelie
Cosme, Emmanuel
author_facet Ajayi, Adekunle
Le Sommer, Julien
Chassignet, Eric
Molines, Jean‐marc
Xu, Xiaobiao
Albert, Aurelie
Cosme, Emmanuel
author_sort Ajayi, Adekunle
title Spatial and Temporal Variability of the North Atlantic Eddy Field From Two Kilometric‐Resolution Ocean Models
title_short Spatial and Temporal Variability of the North Atlantic Eddy Field From Two Kilometric‐Resolution Ocean Models
title_full Spatial and Temporal Variability of the North Atlantic Eddy Field From Two Kilometric‐Resolution Ocean Models
title_fullStr Spatial and Temporal Variability of the North Atlantic Eddy Field From Two Kilometric‐Resolution Ocean Models
title_full_unstemmed Spatial and Temporal Variability of the North Atlantic Eddy Field From Two Kilometric‐Resolution Ocean Models
title_sort spatial and temporal variability of the north atlantic eddy field from two kilometric‐resolution ocean models
publisher HAL CCSD
publishDate 2020
url https://hal.science/hal-03084224
https://hal.science/hal-03084224/document
https://hal.science/hal-03084224/file/2019JC015827.pdf
https://doi.org/10.1029/2019JC015827
genre North Atlantic
genre_facet North Atlantic
op_source ISSN: 2169-9275
EISSN: 2169-9291
Journal of Geophysical Research. Oceans
https://hal.science/hal-03084224
Journal of Geophysical Research. Oceans, 2020, 125 (5), &#x27E8;10.1029/2019JC015827&#x27E9;
op_relation info:eu-repo/semantics/altIdentifier/doi/10.1029/2019JC015827
hal-03084224
https://hal.science/hal-03084224
https://hal.science/hal-03084224/document
https://hal.science/hal-03084224/file/2019JC015827.pdf
doi:10.1029/2019JC015827
op_rights http://creativecommons.org/licenses/by-nd/
info:eu-repo/semantics/OpenAccess
op_doi https://doi.org/10.1029/2019JC015827
container_title Journal of Geophysical Research: Oceans
container_volume 125
container_issue 5
_version_ 1797587915584307200