Decreased mitochondrial metabolic requirements in fasting animals carry an oxidative cost

WOS:000443560300005 International audience 1. Many animals experience periods of food shortage in their natural environment. It has been hypothesised that the metabolic responses of animals to naturally-occurring periods of food deprivation may have long-term negative impacts on their subsequent lif...

Full description

Bibliographic Details
Published in:Functional Ecology
Main Authors: Salin, Karine, Villasevil, Eugenia M., Anderson, Graeme J., Auer, Sonya K., Selman, Colin, Hartley, Richard C., Mullen, William, Chinopoulos, Christos, Metcalfe, Neil B.
Other Authors: University of Glasgow, Laboratoire des Sciences de l'Environnement Marin (LEMAR) (LEMAR), Institut de Recherche pour le Développement (IRD)-Institut Français de Recherche pour l'Exploitation de la Mer (IFREMER)-Université de Brest (UBO)-Institut Universitaire Européen de la Mer (IUEM), Institut de Recherche pour le Développement (IRD)-Institut national des sciences de l'Univers (INSU - CNRS)-Université de Brest (UBO)-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD)-Institut national des sciences de l'Univers (INSU - CNRS)-Université de Brest (UBO)-Centre National de la Recherche Scientifique (CNRS)-Centre National de la Recherche Scientifique (CNRS), Institut Français de Recherche pour l'Exploitation de la Mer (IFREMER), Semmelweis University Budapest, European Project: 322784,EC:FP7:ERC,ERC-2012-ADG_20120314,METAPHEN(2013)
Format: Article in Journal/Newspaper
Language:English
Published: HAL CCSD 2018
Subjects:
ACL
Online Access:https://hal.science/hal-02650999
https://hal.science/hal-02650999/document
https://hal.science/hal-02650999/file/Salin_etal_FE_2018.pdf
https://doi.org/10.1111/1365-2435.13125
id ftinsu:oai:HAL:hal-02650999v1
record_format openpolar
institution Open Polar
collection Institut national des sciences de l'Univers: HAL-INSU
op_collection_id ftinsu
language English
topic ACL
food-deprivation
energy-metabolism
high-resolution respirometry
hydrogen-peroxide
in vivo
king penguins
life-history evolution
liver atrophy
living drosophila
MitoB probe
mitochondrial respiratory state
oxygen species production
rat-liver mitochondria
skeletal-muscle
[SDE.BE]Environmental Sciences/Biodiversity and Ecology
spellingShingle ACL
food-deprivation
energy-metabolism
high-resolution respirometry
hydrogen-peroxide
in vivo
king penguins
life-history evolution
liver atrophy
living drosophila
MitoB probe
mitochondrial respiratory state
oxygen species production
rat-liver mitochondria
skeletal-muscle
[SDE.BE]Environmental Sciences/Biodiversity and Ecology
Salin, Karine
Villasevil, Eugenia M.
Anderson, Graeme J.
Auer, Sonya K.
Selman, Colin
Hartley, Richard C.
Mullen, William
Chinopoulos, Christos
Metcalfe, Neil B.
Decreased mitochondrial metabolic requirements in fasting animals carry an oxidative cost
topic_facet ACL
food-deprivation
energy-metabolism
high-resolution respirometry
hydrogen-peroxide
in vivo
king penguins
life-history evolution
liver atrophy
living drosophila
MitoB probe
mitochondrial respiratory state
oxygen species production
rat-liver mitochondria
skeletal-muscle
[SDE.BE]Environmental Sciences/Biodiversity and Ecology
description WOS:000443560300005 International audience 1. Many animals experience periods of food shortage in their natural environment. It has been hypothesised that the metabolic responses of animals to naturally-occurring periods of food deprivation may have long-term negative impacts on their subsequent life-history. 2. In particular, reductions in energy requirements in response to fasting may help preserve limited resources but potentially come at a cost of increased oxidative stress. However, little is known about this trade-off since studies of energy metabolism are generally conducted separately from those of oxidative stress. 3. Using a novel approach that combines measurements of mitochondrial function with in vivo levels of hydrogen peroxide (H2O2) in brown trout (Salmo trutta), we show here that fasting induces energy savings in a highly metabolically active organ (the liver) but at the cost of a significant increase in H2O2, an important form of reactive oxygen species (ROS). 4. After a 2-week period of fasting, brown trout reduced their whole-liver mitochondrial respiratory capacities (state 3, state 4 and cytochrome c oxidase activity), mainly due to reductions in liver size (and hence the total mitochondrial content). This was compensated for at the level of the mitochondrion, with an increase in state 3 respiration combined with a decrease in state 4 respiration, suggesting a selective increase in the capacity to produce ATP without a concomitant increase in energy dissipated through proton leakage. However, the reduction in total hepatic metabolic capacity in fasted fish was associated with an almost two-fold increase in in vivo mitochondrial H2O2 levels (as measured by the MitoB probe). 5. The resulting increase in mitochondrial ROS, and hence potential risk of oxidative damage, provides mechanistic insight into the trade-off between the short-term energetic benefits of reducing metabolism in response to fasting and the potential long-term costs to subsequent life-history traits.
author2 University of Glasgow
Laboratoire des Sciences de l'Environnement Marin (LEMAR) (LEMAR)
Institut de Recherche pour le Développement (IRD)-Institut Français de Recherche pour l'Exploitation de la Mer (IFREMER)-Université de Brest (UBO)-Institut Universitaire Européen de la Mer (IUEM)
Institut de Recherche pour le Développement (IRD)-Institut national des sciences de l'Univers (INSU - CNRS)-Université de Brest (UBO)-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD)-Institut national des sciences de l'Univers (INSU - CNRS)-Université de Brest (UBO)-Centre National de la Recherche Scientifique (CNRS)-Centre National de la Recherche Scientifique (CNRS)
Institut Français de Recherche pour l'Exploitation de la Mer (IFREMER)
Semmelweis University Budapest
European Project: 322784,EC:FP7:ERC,ERC-2012-ADG_20120314,METAPHEN(2013)
format Article in Journal/Newspaper
author Salin, Karine
Villasevil, Eugenia M.
Anderson, Graeme J.
Auer, Sonya K.
Selman, Colin
Hartley, Richard C.
Mullen, William
Chinopoulos, Christos
Metcalfe, Neil B.
author_facet Salin, Karine
Villasevil, Eugenia M.
Anderson, Graeme J.
Auer, Sonya K.
Selman, Colin
Hartley, Richard C.
Mullen, William
Chinopoulos, Christos
Metcalfe, Neil B.
author_sort Salin, Karine
title Decreased mitochondrial metabolic requirements in fasting animals carry an oxidative cost
title_short Decreased mitochondrial metabolic requirements in fasting animals carry an oxidative cost
title_full Decreased mitochondrial metabolic requirements in fasting animals carry an oxidative cost
title_fullStr Decreased mitochondrial metabolic requirements in fasting animals carry an oxidative cost
title_full_unstemmed Decreased mitochondrial metabolic requirements in fasting animals carry an oxidative cost
title_sort decreased mitochondrial metabolic requirements in fasting animals carry an oxidative cost
publisher HAL CCSD
publishDate 2018
url https://hal.science/hal-02650999
https://hal.science/hal-02650999/document
https://hal.science/hal-02650999/file/Salin_etal_FE_2018.pdf
https://doi.org/10.1111/1365-2435.13125
genre King Penguins
genre_facet King Penguins
op_source ISSN: 0269-8463
EISSN: 1365-2435
Functional Ecology
https://hal.science/hal-02650999
Functional Ecology, 2018, 32 (9), pp.2149-2157. ⟨10.1111/1365-2435.13125⟩
op_relation info:eu-repo/semantics/altIdentifier/doi/10.1111/1365-2435.13125
info:eu-repo/grantAgreement/EC/FP7/322784/EU/The ecology of metabolic phenotypes: from cells to populations/METAPHEN
hal-02650999
https://hal.science/hal-02650999
https://hal.science/hal-02650999/document
https://hal.science/hal-02650999/file/Salin_etal_FE_2018.pdf
doi:10.1111/1365-2435.13125
op_rights http://creativecommons.org/licenses/by/
info:eu-repo/semantics/OpenAccess
op_doi https://doi.org/10.1111/1365-2435.13125
container_title Functional Ecology
container_volume 32
container_issue 9
container_start_page 2149
op_container_end_page 2157
_version_ 1796312600401674240
spelling ftinsu:oai:HAL:hal-02650999v1 2024-04-14T08:14:24+00:00 Decreased mitochondrial metabolic requirements in fasting animals carry an oxidative cost Salin, Karine Villasevil, Eugenia M. Anderson, Graeme J. Auer, Sonya K. Selman, Colin Hartley, Richard C. Mullen, William Chinopoulos, Christos Metcalfe, Neil B. University of Glasgow Laboratoire des Sciences de l'Environnement Marin (LEMAR) (LEMAR) Institut de Recherche pour le Développement (IRD)-Institut Français de Recherche pour l'Exploitation de la Mer (IFREMER)-Université de Brest (UBO)-Institut Universitaire Européen de la Mer (IUEM) Institut de Recherche pour le Développement (IRD)-Institut national des sciences de l'Univers (INSU - CNRS)-Université de Brest (UBO)-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD)-Institut national des sciences de l'Univers (INSU - CNRS)-Université de Brest (UBO)-Centre National de la Recherche Scientifique (CNRS)-Centre National de la Recherche Scientifique (CNRS) Institut Français de Recherche pour l'Exploitation de la Mer (IFREMER) Semmelweis University Budapest European Project: 322784,EC:FP7:ERC,ERC-2012-ADG_20120314,METAPHEN(2013) 2018 https://hal.science/hal-02650999 https://hal.science/hal-02650999/document https://hal.science/hal-02650999/file/Salin_etal_FE_2018.pdf https://doi.org/10.1111/1365-2435.13125 en eng HAL CCSD Wiley info:eu-repo/semantics/altIdentifier/doi/10.1111/1365-2435.13125 info:eu-repo/grantAgreement/EC/FP7/322784/EU/The ecology of metabolic phenotypes: from cells to populations/METAPHEN hal-02650999 https://hal.science/hal-02650999 https://hal.science/hal-02650999/document https://hal.science/hal-02650999/file/Salin_etal_FE_2018.pdf doi:10.1111/1365-2435.13125 http://creativecommons.org/licenses/by/ info:eu-repo/semantics/OpenAccess ISSN: 0269-8463 EISSN: 1365-2435 Functional Ecology https://hal.science/hal-02650999 Functional Ecology, 2018, 32 (9), pp.2149-2157. ⟨10.1111/1365-2435.13125⟩ ACL food-deprivation energy-metabolism high-resolution respirometry hydrogen-peroxide in vivo king penguins life-history evolution liver atrophy living drosophila MitoB probe mitochondrial respiratory state oxygen species production rat-liver mitochondria skeletal-muscle [SDE.BE]Environmental Sciences/Biodiversity and Ecology info:eu-repo/semantics/article Journal articles 2018 ftinsu https://doi.org/10.1111/1365-2435.13125 2024-03-21T17:20:01Z WOS:000443560300005 International audience 1. Many animals experience periods of food shortage in their natural environment. It has been hypothesised that the metabolic responses of animals to naturally-occurring periods of food deprivation may have long-term negative impacts on their subsequent life-history. 2. In particular, reductions in energy requirements in response to fasting may help preserve limited resources but potentially come at a cost of increased oxidative stress. However, little is known about this trade-off since studies of energy metabolism are generally conducted separately from those of oxidative stress. 3. Using a novel approach that combines measurements of mitochondrial function with in vivo levels of hydrogen peroxide (H2O2) in brown trout (Salmo trutta), we show here that fasting induces energy savings in a highly metabolically active organ (the liver) but at the cost of a significant increase in H2O2, an important form of reactive oxygen species (ROS). 4. After a 2-week period of fasting, brown trout reduced their whole-liver mitochondrial respiratory capacities (state 3, state 4 and cytochrome c oxidase activity), mainly due to reductions in liver size (and hence the total mitochondrial content). This was compensated for at the level of the mitochondrion, with an increase in state 3 respiration combined with a decrease in state 4 respiration, suggesting a selective increase in the capacity to produce ATP without a concomitant increase in energy dissipated through proton leakage. However, the reduction in total hepatic metabolic capacity in fasted fish was associated with an almost two-fold increase in in vivo mitochondrial H2O2 levels (as measured by the MitoB probe). 5. The resulting increase in mitochondrial ROS, and hence potential risk of oxidative damage, provides mechanistic insight into the trade-off between the short-term energetic benefits of reducing metabolism in response to fasting and the potential long-term costs to subsequent life-history traits. Article in Journal/Newspaper King Penguins Institut national des sciences de l'Univers: HAL-INSU Functional Ecology 32 9 2149 2157