Assessing the sensitivity of bivalve populations to global warming using an individual-based modelling approach

International audience Climate change exposes benthic species populations in coastal ecosystems to a combination of different stressors (e.g., warming, acidification and eutrophication), threatening the sustainability of the ecological functions they provide. Thermal stress appears to be one of the...

Full description

Bibliographic Details
Published in:Global Change Biology
Main Authors: Thomas, Yoann, Bacher, Cédric
Other Authors: Laboratoire des Sciences de l'Environnement Marin (LEMAR) (LEMAR), Institut de Recherche pour le Développement (IRD)-Institut Français de Recherche pour l'Exploitation de la Mer (IFREMER)-Université de Brest (UBO)-Institut Universitaire Européen de la Mer (IUEM), Institut de Recherche pour le Développement (IRD)-Institut national des sciences de l'Univers (INSU - CNRS)-Université de Brest (UBO)-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD)-Institut national des sciences de l'Univers (INSU - CNRS)-Université de Brest (UBO)-Centre National de la Recherche Scientifique (CNRS)-Centre National de la Recherche Scientifique (CNRS), Laboratoire d'Ecologie Benthique Côtière (LEBCO), Unité Dynamiques des Écosystèmes Côtiers (DYNECO), Institut Français de Recherche pour l'Exploitation de la Mer (IFREMER)-Institut Français de Recherche pour l'Exploitation de la Mer (IFREMER)
Format: Article in Journal/Newspaper
Language:English
Published: HAL CCSD 2018
Subjects:
ACL
Online Access:https://hal.science/hal-02530677
https://hal.science/hal-02530677/document
https://hal.science/hal-02530677/file/Thomas_Bacher_GCB_2018.pdf
https://doi.org/10.1111/gcb.14402
id ftinsu:oai:HAL:hal-02530677v1
record_format openpolar
institution Open Polar
collection Institut national des sciences de l'Univers: HAL-INSU
op_collection_id ftinsu
language English
topic benthic species
biogeography
climate scenario
dynamic energy budget
global warming
phenology
population dynamics
temperature tolerance
ACL
[SDV.EE.BIO]Life Sciences [q-bio]/Ecology
environment/Bioclimatology
[SDE.BE]Environmental Sciences/Biodiversity and Ecology
spellingShingle benthic species
biogeography
climate scenario
dynamic energy budget
global warming
phenology
population dynamics
temperature tolerance
ACL
[SDV.EE.BIO]Life Sciences [q-bio]/Ecology
environment/Bioclimatology
[SDE.BE]Environmental Sciences/Biodiversity and Ecology
Thomas, Yoann
Bacher, Cédric
Assessing the sensitivity of bivalve populations to global warming using an individual-based modelling approach
topic_facet benthic species
biogeography
climate scenario
dynamic energy budget
global warming
phenology
population dynamics
temperature tolerance
ACL
[SDV.EE.BIO]Life Sciences [q-bio]/Ecology
environment/Bioclimatology
[SDE.BE]Environmental Sciences/Biodiversity and Ecology
description International audience Climate change exposes benthic species populations in coastal ecosystems to a combination of different stressors (e.g., warming, acidification and eutrophication), threatening the sustainability of the ecological functions they provide. Thermal stress appears to be one of the strongest drivers impacting marine ecosystems, acting across a wide range of scales, from individual metabolic performances to geographic distribution of populations. Accounting for and integrating the response of species functional traits to thermal stress is therefore a necessary step in predicting how populations will respond to the warming expected in coming decades. Here, we developed an individual-based population model using a mechanistic formulation of metabolic processes within the framework of the dynamic energy budget theory. Through a large number of simulations, we assessed the sensitivity of population growth potential to thermal stress and food conditions based on a climate projection scenario (Representative Concentration Pathway; RCP8.5: no reduction of greenhouse gas emissions). We focused on three bivalve species with contrasting thermal tolerance ranges and distinct distribution ranges along 5,000km of coastline in the NE Atlantic: the Pacific oyster (Magallana gigas), and two mussel species: Mytilus edulis and Mytilus galloprovincialis. Our results suggest substantial and contrasting changes within species depending on local temperature and food concentration. Reproductive phenology appeared to be a core process driving the responses of the populations, and these patterns were closely related to species thermal tolerances. The nonlinear relationship we found between individual life-history traits and response at the population level emphasizes the need to consider the interactions resulting from upscaling across different levels of biological organisation. These results underline the importance of a process-based understanding of benthic population response to seawater warming, which will be ...
author2 Laboratoire des Sciences de l'Environnement Marin (LEMAR) (LEMAR)
Institut de Recherche pour le Développement (IRD)-Institut Français de Recherche pour l'Exploitation de la Mer (IFREMER)-Université de Brest (UBO)-Institut Universitaire Européen de la Mer (IUEM)
Institut de Recherche pour le Développement (IRD)-Institut national des sciences de l'Univers (INSU - CNRS)-Université de Brest (UBO)-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD)-Institut national des sciences de l'Univers (INSU - CNRS)-Université de Brest (UBO)-Centre National de la Recherche Scientifique (CNRS)-Centre National de la Recherche Scientifique (CNRS)
Laboratoire d'Ecologie Benthique Côtière (LEBCO)
Unité Dynamiques des Écosystèmes Côtiers (DYNECO)
Institut Français de Recherche pour l'Exploitation de la Mer (IFREMER)-Institut Français de Recherche pour l'Exploitation de la Mer (IFREMER)
format Article in Journal/Newspaper
author Thomas, Yoann
Bacher, Cédric
author_facet Thomas, Yoann
Bacher, Cédric
author_sort Thomas, Yoann
title Assessing the sensitivity of bivalve populations to global warming using an individual-based modelling approach
title_short Assessing the sensitivity of bivalve populations to global warming using an individual-based modelling approach
title_full Assessing the sensitivity of bivalve populations to global warming using an individual-based modelling approach
title_fullStr Assessing the sensitivity of bivalve populations to global warming using an individual-based modelling approach
title_full_unstemmed Assessing the sensitivity of bivalve populations to global warming using an individual-based modelling approach
title_sort assessing the sensitivity of bivalve populations to global warming using an individual-based modelling approach
publisher HAL CCSD
publishDate 2018
url https://hal.science/hal-02530677
https://hal.science/hal-02530677/document
https://hal.science/hal-02530677/file/Thomas_Bacher_GCB_2018.pdf
https://doi.org/10.1111/gcb.14402
genre Pacific oyster
genre_facet Pacific oyster
op_source ISSN: 1354-1013
EISSN: 1365-2486
Global Change Biology
https://hal.science/hal-02530677
Global Change Biology, 2018, 24 (10), pp.4581-4597. ⟨10.1111/gcb.14402⟩
op_relation info:eu-repo/semantics/altIdentifier/doi/10.1111/gcb.14402
hal-02530677
https://hal.science/hal-02530677
https://hal.science/hal-02530677/document
https://hal.science/hal-02530677/file/Thomas_Bacher_GCB_2018.pdf
doi:10.1111/gcb.14402
IRD: fdi:010078764
op_rights info:eu-repo/semantics/OpenAccess
op_doi https://doi.org/10.1111/gcb.14402
container_title Global Change Biology
container_volume 24
container_issue 10
container_start_page 4581
op_container_end_page 4597
_version_ 1797567483993915392
spelling ftinsu:oai:HAL:hal-02530677v1 2024-04-28T08:35:22+00:00 Assessing the sensitivity of bivalve populations to global warming using an individual-based modelling approach Thomas, Yoann Bacher, Cédric Laboratoire des Sciences de l'Environnement Marin (LEMAR) (LEMAR) Institut de Recherche pour le Développement (IRD)-Institut Français de Recherche pour l'Exploitation de la Mer (IFREMER)-Université de Brest (UBO)-Institut Universitaire Européen de la Mer (IUEM) Institut de Recherche pour le Développement (IRD)-Institut national des sciences de l'Univers (INSU - CNRS)-Université de Brest (UBO)-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD)-Institut national des sciences de l'Univers (INSU - CNRS)-Université de Brest (UBO)-Centre National de la Recherche Scientifique (CNRS)-Centre National de la Recherche Scientifique (CNRS) Laboratoire d'Ecologie Benthique Côtière (LEBCO) Unité Dynamiques des Écosystèmes Côtiers (DYNECO) Institut Français de Recherche pour l'Exploitation de la Mer (IFREMER)-Institut Français de Recherche pour l'Exploitation de la Mer (IFREMER) 2018-10 https://hal.science/hal-02530677 https://hal.science/hal-02530677/document https://hal.science/hal-02530677/file/Thomas_Bacher_GCB_2018.pdf https://doi.org/10.1111/gcb.14402 en eng HAL CCSD Wiley info:eu-repo/semantics/altIdentifier/doi/10.1111/gcb.14402 hal-02530677 https://hal.science/hal-02530677 https://hal.science/hal-02530677/document https://hal.science/hal-02530677/file/Thomas_Bacher_GCB_2018.pdf doi:10.1111/gcb.14402 IRD: fdi:010078764 info:eu-repo/semantics/OpenAccess ISSN: 1354-1013 EISSN: 1365-2486 Global Change Biology https://hal.science/hal-02530677 Global Change Biology, 2018, 24 (10), pp.4581-4597. ⟨10.1111/gcb.14402⟩ benthic species biogeography climate scenario dynamic energy budget global warming phenology population dynamics temperature tolerance ACL [SDV.EE.BIO]Life Sciences [q-bio]/Ecology environment/Bioclimatology [SDE.BE]Environmental Sciences/Biodiversity and Ecology info:eu-repo/semantics/article Journal articles 2018 ftinsu https://doi.org/10.1111/gcb.14402 2024-04-05T00:42:11Z International audience Climate change exposes benthic species populations in coastal ecosystems to a combination of different stressors (e.g., warming, acidification and eutrophication), threatening the sustainability of the ecological functions they provide. Thermal stress appears to be one of the strongest drivers impacting marine ecosystems, acting across a wide range of scales, from individual metabolic performances to geographic distribution of populations. Accounting for and integrating the response of species functional traits to thermal stress is therefore a necessary step in predicting how populations will respond to the warming expected in coming decades. Here, we developed an individual-based population model using a mechanistic formulation of metabolic processes within the framework of the dynamic energy budget theory. Through a large number of simulations, we assessed the sensitivity of population growth potential to thermal stress and food conditions based on a climate projection scenario (Representative Concentration Pathway; RCP8.5: no reduction of greenhouse gas emissions). We focused on three bivalve species with contrasting thermal tolerance ranges and distinct distribution ranges along 5,000km of coastline in the NE Atlantic: the Pacific oyster (Magallana gigas), and two mussel species: Mytilus edulis and Mytilus galloprovincialis. Our results suggest substantial and contrasting changes within species depending on local temperature and food concentration. Reproductive phenology appeared to be a core process driving the responses of the populations, and these patterns were closely related to species thermal tolerances. The nonlinear relationship we found between individual life-history traits and response at the population level emphasizes the need to consider the interactions resulting from upscaling across different levels of biological organisation. These results underline the importance of a process-based understanding of benthic population response to seawater warming, which will be ... Article in Journal/Newspaper Pacific oyster Institut national des sciences de l'Univers: HAL-INSU Global Change Biology 24 10 4581 4597