Using high spatio-temporal optical remote sensing to monitor dissolved organic carbon in the Arctic river Yenisei
International audience In Arctic regions, a major concern is the release of carbon from melting permafrost that could greatly exceed current human carbon emissions. Arctic rivers drain these organic-rich watersheds (Ob, Lena, Yenisei, Mackenzie, Yukon) but field measurements at the outlets of these...
Published in: | Remote Sensing |
---|---|
Main Authors: | , , , , , |
Other Authors: | , , , , , , , , , |
Format: | Article in Journal/Newspaper |
Language: | English |
Published: |
HAL CCSD
2016
|
Subjects: | |
Online Access: | https://hal.science/hal-02351634 https://hal.science/hal-02351634/document https://hal.science/hal-02351634/file/remotesensing-08-00803.pdf https://doi.org/10.3390/rs8100803 |
id |
ftinsu:oai:HAL:hal-02351634v1 |
---|---|
record_format |
openpolar |
institution |
Open Polar |
collection |
Institut national des sciences de l'Univers: HAL-INSU |
op_collection_id |
ftinsu |
language |
English |
topic |
high spatio-temporal remote sensing DOC CDOM Arctic river Yenisei Take 5 Landsat 8 [SDU.ENVI]Sciences of the Universe [physics]/Continental interfaces environment |
spellingShingle |
high spatio-temporal remote sensing DOC CDOM Arctic river Yenisei Take 5 Landsat 8 [SDU.ENVI]Sciences of the Universe [physics]/Continental interfaces environment Herrault, P.-A. Gandois, L. Gascoin, Simon Tananaev, N. Le Dantec, T. Teisserenc, R. Using high spatio-temporal optical remote sensing to monitor dissolved organic carbon in the Arctic river Yenisei |
topic_facet |
high spatio-temporal remote sensing DOC CDOM Arctic river Yenisei Take 5 Landsat 8 [SDU.ENVI]Sciences of the Universe [physics]/Continental interfaces environment |
description |
International audience In Arctic regions, a major concern is the release of carbon from melting permafrost that could greatly exceed current human carbon emissions. Arctic rivers drain these organic-rich watersheds (Ob, Lena, Yenisei, Mackenzie, Yukon) but field measurements at the outlets of these great Arctic rivers are constrained by limited accessibility of sampling sites. In particular, the highest dissolved organic carbon (DOC) fluxes are observed throughout the ice breakup period that occurs over a short two to three-week period in late May or early June during the snowmelt-generated peak flow. The colored fraction of dissolved organic carbon (DOC) which absorbs UV and visible light is designed as chromophoric dissolved organic matter (CDOM). It is highly correlated to DOC in large arctic rivers and streams, allowing for remote sensing to monitor DOC concentrations from satellite imagery. High temporal and spatial resolutions remote sensing tools are highly relevant for the study of DOC fluxes in a large Arctic river. The high temporal resolution allows for correctly assessing this highly dynamic process, especially the spring freshet event (a few weeks in May). The high spatial resolution allows for assessing the spatial variability within the stream and quantifying DOC transfer during the ice break period when the access to the river is almost impossible. In this study, we develop a CDOM retrieval algorithm at a high spatial and a high temporal resolution in the Yenisei River. We used extensive DOC and DOM spectral absorbance datasets from 2014 and 2015. Twelve SPOT5 (Take5) and Landsat 8 (OLI) images from 2014 and 2015 were examined for this investigation. Relationships between CDOM and spectral variables were explored using linear models (LM). Results demonstrated the capacity of a CDOM algorithm retrieval to monitor DOC fluxes in the Yenisei River during a whole open water season with a special focus on the peak flow period. Overall, future Sentinel2/Landsat8 synergies are promising to monitor DOC ... |
author2 |
Laboratoire Ecologie Fonctionnelle et Environnement (LEFE) Institut Ecologie et Environnement - CNRS Ecologie et Environnement (INEE-CNRS) Centre National de la Recherche Scientifique (CNRS)-Centre National de la Recherche Scientifique (CNRS)-Université Toulouse III - Paul Sabatier (UT3) Université de Toulouse (UT)-Université de Toulouse (UT)-Observatoire Midi-Pyrénées (OMP) Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3) Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales Toulouse (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France-Institut de Recherche pour le Développement (IRD)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales Toulouse (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France-Centre National de la Recherche Scientifique (CNRS)-Institut National Polytechnique (Toulouse) (Toulouse INP) Université de Toulouse (UT) Centre d'études spatiales de la biosphère (CESBIO) Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire Midi-Pyrénées (OMP) Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales Toulouse (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales Toulouse (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France-Centre National de la Recherche Scientifique (CNRS)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE) |
format |
Article in Journal/Newspaper |
author |
Herrault, P.-A. Gandois, L. Gascoin, Simon Tananaev, N. Le Dantec, T. Teisserenc, R. |
author_facet |
Herrault, P.-A. Gandois, L. Gascoin, Simon Tananaev, N. Le Dantec, T. Teisserenc, R. |
author_sort |
Herrault, P.-A. |
title |
Using high spatio-temporal optical remote sensing to monitor dissolved organic carbon in the Arctic river Yenisei |
title_short |
Using high spatio-temporal optical remote sensing to monitor dissolved organic carbon in the Arctic river Yenisei |
title_full |
Using high spatio-temporal optical remote sensing to monitor dissolved organic carbon in the Arctic river Yenisei |
title_fullStr |
Using high spatio-temporal optical remote sensing to monitor dissolved organic carbon in the Arctic river Yenisei |
title_full_unstemmed |
Using high spatio-temporal optical remote sensing to monitor dissolved organic carbon in the Arctic river Yenisei |
title_sort |
using high spatio-temporal optical remote sensing to monitor dissolved organic carbon in the arctic river yenisei |
publisher |
HAL CCSD |
publishDate |
2016 |
url |
https://hal.science/hal-02351634 https://hal.science/hal-02351634/document https://hal.science/hal-02351634/file/remotesensing-08-00803.pdf https://doi.org/10.3390/rs8100803 |
long_lat |
ENVELOPE(84.738,84.738,69.718,69.718) |
geographic |
Arctic Yenisei River Yukon |
geographic_facet |
Arctic Yenisei River Yukon |
genre |
Arctic Ice permafrost Yukon |
genre_facet |
Arctic Ice permafrost Yukon |
op_source |
ISSN: 2072-4292 Remote Sensing https://hal.science/hal-02351634 Remote Sensing, 2016, 8 (10), ⟨10.3390/rs8100803⟩ |
op_relation |
info:eu-repo/semantics/altIdentifier/doi/10.3390/rs8100803 hal-02351634 https://hal.science/hal-02351634 https://hal.science/hal-02351634/document https://hal.science/hal-02351634/file/remotesensing-08-00803.pdf doi:10.3390/rs8100803 |
op_rights |
http://creativecommons.org/licenses/by-nc/ info:eu-repo/semantics/OpenAccess |
op_doi |
https://doi.org/10.3390/rs8100803 |
container_title |
Remote Sensing |
container_volume |
8 |
container_issue |
10 |
container_start_page |
803 |
_version_ |
1790596040359936000 |
spelling |
ftinsu:oai:HAL:hal-02351634v1 2024-02-11T10:00:20+01:00 Using high spatio-temporal optical remote sensing to monitor dissolved organic carbon in the Arctic river Yenisei Herrault, P.-A. Gandois, L. Gascoin, Simon Tananaev, N. Le Dantec, T. Teisserenc, R. Laboratoire Ecologie Fonctionnelle et Environnement (LEFE) Institut Ecologie et Environnement - CNRS Ecologie et Environnement (INEE-CNRS) Centre National de la Recherche Scientifique (CNRS)-Centre National de la Recherche Scientifique (CNRS)-Université Toulouse III - Paul Sabatier (UT3) Université de Toulouse (UT)-Université de Toulouse (UT)-Observatoire Midi-Pyrénées (OMP) Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3) Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales Toulouse (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France-Institut de Recherche pour le Développement (IRD)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales Toulouse (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France-Centre National de la Recherche Scientifique (CNRS)-Institut National Polytechnique (Toulouse) (Toulouse INP) Université de Toulouse (UT) Centre d'études spatiales de la biosphère (CESBIO) Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire Midi-Pyrénées (OMP) Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales Toulouse (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales Toulouse (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France-Centre National de la Recherche Scientifique (CNRS)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE) 2016 https://hal.science/hal-02351634 https://hal.science/hal-02351634/document https://hal.science/hal-02351634/file/remotesensing-08-00803.pdf https://doi.org/10.3390/rs8100803 en eng HAL CCSD MDPI info:eu-repo/semantics/altIdentifier/doi/10.3390/rs8100803 hal-02351634 https://hal.science/hal-02351634 https://hal.science/hal-02351634/document https://hal.science/hal-02351634/file/remotesensing-08-00803.pdf doi:10.3390/rs8100803 http://creativecommons.org/licenses/by-nc/ info:eu-repo/semantics/OpenAccess ISSN: 2072-4292 Remote Sensing https://hal.science/hal-02351634 Remote Sensing, 2016, 8 (10), ⟨10.3390/rs8100803⟩ high spatio-temporal remote sensing DOC CDOM Arctic river Yenisei Take 5 Landsat 8 [SDU.ENVI]Sciences of the Universe [physics]/Continental interfaces environment info:eu-repo/semantics/article Journal articles 2016 ftinsu https://doi.org/10.3390/rs8100803 2024-01-17T17:27:03Z International audience In Arctic regions, a major concern is the release of carbon from melting permafrost that could greatly exceed current human carbon emissions. Arctic rivers drain these organic-rich watersheds (Ob, Lena, Yenisei, Mackenzie, Yukon) but field measurements at the outlets of these great Arctic rivers are constrained by limited accessibility of sampling sites. In particular, the highest dissolved organic carbon (DOC) fluxes are observed throughout the ice breakup period that occurs over a short two to three-week period in late May or early June during the snowmelt-generated peak flow. The colored fraction of dissolved organic carbon (DOC) which absorbs UV and visible light is designed as chromophoric dissolved organic matter (CDOM). It is highly correlated to DOC in large arctic rivers and streams, allowing for remote sensing to monitor DOC concentrations from satellite imagery. High temporal and spatial resolutions remote sensing tools are highly relevant for the study of DOC fluxes in a large Arctic river. The high temporal resolution allows for correctly assessing this highly dynamic process, especially the spring freshet event (a few weeks in May). The high spatial resolution allows for assessing the spatial variability within the stream and quantifying DOC transfer during the ice break period when the access to the river is almost impossible. In this study, we develop a CDOM retrieval algorithm at a high spatial and a high temporal resolution in the Yenisei River. We used extensive DOC and DOM spectral absorbance datasets from 2014 and 2015. Twelve SPOT5 (Take5) and Landsat 8 (OLI) images from 2014 and 2015 were examined for this investigation. Relationships between CDOM and spectral variables were explored using linear models (LM). Results demonstrated the capacity of a CDOM algorithm retrieval to monitor DOC fluxes in the Yenisei River during a whole open water season with a special focus on the peak flow period. Overall, future Sentinel2/Landsat8 synergies are promising to monitor DOC ... Article in Journal/Newspaper Arctic Ice permafrost Yukon Institut national des sciences de l'Univers: HAL-INSU Arctic Yenisei River ENVELOPE(84.738,84.738,69.718,69.718) Yukon Remote Sensing 8 10 803 |