SO 2 Oxidation Kinetics Leave a Consistent Isotopic Imprint on Volcanic Ice Core Sulfate

International audience This work presents measurements of time-resolved mass-independently fractionated sulfate of volcanic origin from Antarctic ice core records that cover the last 2,600 years. These measurements are used to evaluate the time dependence of the deposited isotopic signal and to extr...

Full description

Bibliographic Details
Published in:Journal of Geophysical Research: Atmospheres
Main Authors: Gautier, Elsa, Savarino, Joel, Erbland, Joseph, Farquhar, James
Other Authors: Observatoire des Sciences de l'Univers de Grenoble (OSUG ), Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Institut national des sciences de l'Univers (INSU - CNRS)-Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA)-Université Savoie Mont Blanc (USMB Université de Savoie Université de Chambéry )-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes 2016-2019 (UGA 2016-2019 ), Université Grenoble Alpes 2016-2019 (UGA 2016-2019 ), Department of Geology College Park, University of Maryland College Park, University of Maryland System-University of Maryland System, ANR-16-CE01-0011,EAIIST,Projet International d'exploration de la calotte polaire de l'Antarctique de l'Est(2016)
Format: Article in Journal/Newspaper
Language:English
Published: HAL CCSD 2018
Subjects:
Online Access:https://hal.science/hal-02350364
https://hal.science/hal-02350364/document
https://hal.science/hal-02350364/file/AGU-SMIF-article%20file-2nd_submission_plaintext.pdf
https://doi.org/10.1029/2018JD028456
id ftinsu:oai:HAL:hal-02350364v1
record_format openpolar
institution Open Polar
collection Institut national des sciences de l'Univers: HAL-INSU
op_collection_id ftinsu
language English
topic [SDU.OCEAN]Sciences of the Universe [physics]/Ocean
Atmosphere
spellingShingle [SDU.OCEAN]Sciences of the Universe [physics]/Ocean
Atmosphere
Gautier, Elsa
Savarino, Joel
Erbland, Joseph
Farquhar, James
SO 2 Oxidation Kinetics Leave a Consistent Isotopic Imprint on Volcanic Ice Core Sulfate
topic_facet [SDU.OCEAN]Sciences of the Universe [physics]/Ocean
Atmosphere
description International audience This work presents measurements of time-resolved mass-independently fractionated sulfate of volcanic origin from Antarctic ice core records that cover the last 2,600 years. These measurements are used to evaluate the time dependence of the deposited isotopic signal and to extract the isotopic characteristics of the reactions yielding sulfate from stratospheric volcanic eruptions in the modern atmosphere. Time evolution of the signal in snow (years) with respect to the fast SO 2 oxidation in the stratosphere suggests that photochemically produced condensed phase is rapidly and continuously separated from the gas phase and preserved during transportation and deposition on the polar ice cap. On some eruptions, a nonzero isotopic mass balance highlights that a part of the signal can be lost during transport and/or deposition. The large number of volcanic events studied allows the Δ 33 S versus Δ 36 S and δ 34 S versus Δ 33 S slopes to be constrained at À1.56 (1σ = 0.25) and 0.09 (1σ = 0.02), respectively. The Δ 33 S versus Δ 36 S slope refines a prior determinations of Δ 36 S/Δ 33 S = À4 and overlaps the range observed for sulfur seen in early Earth samples (Archean). In recent volcanogenic sulfate, the Δ 33 S versus δ 34 S differs, however, from the Archean record. The similitude for Δ 36 S/Δ 33 S and the difference for Δ 33 S/δ 34 S suggest similar mass-independently fractionated sulfate processes to the Archean atmosphere. Using a simple model, we highlight that a combination of several mechanisms is needed to reproduce the observed isotopic trends and suggest a greater contribution from mass-dependent oxidation by OH in the modern atmosphere. Plain Language Summary Large volcanic eruptions inject sulfurous gases in the stratosphere, where they rapidly form sulfuric acid aerosols. These aerosols can reside in the stratosphere for years, cover the entire globe, and profoundly modify the climate by scattering and absorbing solar radiation. Sulfuric acid aerosols formed by this process ...
author2 Observatoire des Sciences de l'Univers de Grenoble (OSUG )
Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Institut national des sciences de l'Univers (INSU - CNRS)-Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA)-Université Savoie Mont Blanc (USMB Université de Savoie Université de Chambéry )-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes 2016-2019 (UGA 2016-2019 )
Université Grenoble Alpes 2016-2019 (UGA 2016-2019 )
Department of Geology College Park
University of Maryland College Park
University of Maryland System-University of Maryland System
ANR-16-CE01-0011,EAIIST,Projet International d'exploration de la calotte polaire de l'Antarctique de l'Est(2016)
format Article in Journal/Newspaper
author Gautier, Elsa
Savarino, Joel
Erbland, Joseph
Farquhar, James
author_facet Gautier, Elsa
Savarino, Joel
Erbland, Joseph
Farquhar, James
author_sort Gautier, Elsa
title SO 2 Oxidation Kinetics Leave a Consistent Isotopic Imprint on Volcanic Ice Core Sulfate
title_short SO 2 Oxidation Kinetics Leave a Consistent Isotopic Imprint on Volcanic Ice Core Sulfate
title_full SO 2 Oxidation Kinetics Leave a Consistent Isotopic Imprint on Volcanic Ice Core Sulfate
title_fullStr SO 2 Oxidation Kinetics Leave a Consistent Isotopic Imprint on Volcanic Ice Core Sulfate
title_full_unstemmed SO 2 Oxidation Kinetics Leave a Consistent Isotopic Imprint on Volcanic Ice Core Sulfate
title_sort so 2 oxidation kinetics leave a consistent isotopic imprint on volcanic ice core sulfate
publisher HAL CCSD
publishDate 2018
url https://hal.science/hal-02350364
https://hal.science/hal-02350364/document
https://hal.science/hal-02350364/file/AGU-SMIF-article%20file-2nd_submission_plaintext.pdf
https://doi.org/10.1029/2018JD028456
genre Antarc*
Antarctic
Ice cap
ice core
Polar Ice Cap
genre_facet Antarc*
Antarctic
Ice cap
ice core
Polar Ice Cap
op_source ISSN: 2169-897X
EISSN: 2169-8996
Journal of Geophysical Research: Atmospheres
https://hal.science/hal-02350364
Journal of Geophysical Research: Atmospheres, 2018, 123 (17), pp.9801-9812. ⟨10.1029/2018JD028456⟩
op_relation info:eu-repo/semantics/altIdentifier/doi/10.1029/2018JD028456
hal-02350364
https://hal.science/hal-02350364
https://hal.science/hal-02350364/document
https://hal.science/hal-02350364/file/AGU-SMIF-article%20file-2nd_submission_plaintext.pdf
doi:10.1029/2018JD028456
op_rights info:eu-repo/semantics/OpenAccess
op_doi https://doi.org/10.1029/2018JD028456
container_title Journal of Geophysical Research: Atmospheres
container_volume 123
container_issue 17
container_start_page 9801
op_container_end_page 9812
_version_ 1797572972049858560
spelling ftinsu:oai:HAL:hal-02350364v1 2024-04-28T08:01:01+00:00 SO 2 Oxidation Kinetics Leave a Consistent Isotopic Imprint on Volcanic Ice Core Sulfate Gautier, Elsa Savarino, Joel Erbland, Joseph Farquhar, James Observatoire des Sciences de l'Univers de Grenoble (OSUG ) Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Institut national des sciences de l'Univers (INSU - CNRS)-Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA)-Université Savoie Mont Blanc (USMB Université de Savoie Université de Chambéry )-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes 2016-2019 (UGA 2016-2019 ) Université Grenoble Alpes 2016-2019 (UGA 2016-2019 ) Department of Geology College Park University of Maryland College Park University of Maryland System-University of Maryland System ANR-16-CE01-0011,EAIIST,Projet International d'exploration de la calotte polaire de l'Antarctique de l'Est(2016) 2018-09-16 https://hal.science/hal-02350364 https://hal.science/hal-02350364/document https://hal.science/hal-02350364/file/AGU-SMIF-article%20file-2nd_submission_plaintext.pdf https://doi.org/10.1029/2018JD028456 en eng HAL CCSD American Geophysical Union info:eu-repo/semantics/altIdentifier/doi/10.1029/2018JD028456 hal-02350364 https://hal.science/hal-02350364 https://hal.science/hal-02350364/document https://hal.science/hal-02350364/file/AGU-SMIF-article%20file-2nd_submission_plaintext.pdf doi:10.1029/2018JD028456 info:eu-repo/semantics/OpenAccess ISSN: 2169-897X EISSN: 2169-8996 Journal of Geophysical Research: Atmospheres https://hal.science/hal-02350364 Journal of Geophysical Research: Atmospheres, 2018, 123 (17), pp.9801-9812. ⟨10.1029/2018JD028456⟩ [SDU.OCEAN]Sciences of the Universe [physics]/Ocean Atmosphere info:eu-repo/semantics/article Journal articles 2018 ftinsu https://doi.org/10.1029/2018JD028456 2024-04-05T00:39:09Z International audience This work presents measurements of time-resolved mass-independently fractionated sulfate of volcanic origin from Antarctic ice core records that cover the last 2,600 years. These measurements are used to evaluate the time dependence of the deposited isotopic signal and to extract the isotopic characteristics of the reactions yielding sulfate from stratospheric volcanic eruptions in the modern atmosphere. Time evolution of the signal in snow (years) with respect to the fast SO 2 oxidation in the stratosphere suggests that photochemically produced condensed phase is rapidly and continuously separated from the gas phase and preserved during transportation and deposition on the polar ice cap. On some eruptions, a nonzero isotopic mass balance highlights that a part of the signal can be lost during transport and/or deposition. The large number of volcanic events studied allows the Δ 33 S versus Δ 36 S and δ 34 S versus Δ 33 S slopes to be constrained at À1.56 (1σ = 0.25) and 0.09 (1σ = 0.02), respectively. The Δ 33 S versus Δ 36 S slope refines a prior determinations of Δ 36 S/Δ 33 S = À4 and overlaps the range observed for sulfur seen in early Earth samples (Archean). In recent volcanogenic sulfate, the Δ 33 S versus δ 34 S differs, however, from the Archean record. The similitude for Δ 36 S/Δ 33 S and the difference for Δ 33 S/δ 34 S suggest similar mass-independently fractionated sulfate processes to the Archean atmosphere. Using a simple model, we highlight that a combination of several mechanisms is needed to reproduce the observed isotopic trends and suggest a greater contribution from mass-dependent oxidation by OH in the modern atmosphere. Plain Language Summary Large volcanic eruptions inject sulfurous gases in the stratosphere, where they rapidly form sulfuric acid aerosols. These aerosols can reside in the stratosphere for years, cover the entire globe, and profoundly modify the climate by scattering and absorbing solar radiation. Sulfuric acid aerosols formed by this process ... Article in Journal/Newspaper Antarc* Antarctic Ice cap ice core Polar Ice Cap Institut national des sciences de l'Univers: HAL-INSU Journal of Geophysical Research: Atmospheres 123 17 9801 9812