Thermal fracturing on comets

International audience We simulate the stresses induced by temperature changes in a putative hard layer near the surface of comet 67P/Churyumov-Gerasimenko with a thermo-viscoelastic model. Such a layer could be formed by the recondensation or sintering of water ice (and dust grains), as suggested b...

Full description

Bibliographic Details
Published in:Astronomy & Astrophysics
Main Authors: Attree, N., Groussin, O., Jorda, L., Rodionov, S., Auger, A.-T., Thomas, N., Brouet, Y., Poch, O., Kührt, Ekkehard, Knapmeyer, M., Preusker, F., Scholten, F., Knollenberg, J., Hviid, S., Hartogh, P.
Other Authors: Laboratoire d'Astrophysique de Marseille (LAM), Aix Marseille Université (AMU)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales Toulouse (CNES)-Centre National de la Recherche Scientifique (CNRS), Universität Bern / University of Bern (UNIBE), Physikalisches Institut Bern, DLR Institute of Planetary Research, German Aerospace Center (DLR), Deutsches Zentrum für Luft- und Raumfahrt (DLR), Max-Planck-Institut für Sonnensystemforschung = Max Planck Institute for Solar System Research (MPS), Max-Planck-Gesellschaft
Format: Article in Journal/Newspaper
Language:English
Published: HAL CCSD 2018
Subjects:
Ice
Online Access:https://hal.science/hal-02108715
https://hal.science/hal-02108715/document
https://hal.science/hal-02108715/file/Attree_etal_2018b.pdf
https://doi.org/10.1051/0004-6361/201731937
id ftinsu:oai:HAL:hal-02108715v1
record_format openpolar
spelling ftinsu:oai:HAL:hal-02108715v1 2024-02-04T10:01:08+01:00 Thermal fracturing on comets Thermal fracturing on comets: Applications to 67P/Churyumov-Gerasimenko Attree, N. Groussin, O. Jorda, L. Rodionov, S. Auger, A.-T. Thomas, N. Brouet, Y. Poch, O. Kührt, Ekkehard Knapmeyer, M. Preusker, F. Scholten, F. Knollenberg, J. Hviid, S. Hartogh, P. Laboratoire d'Astrophysique de Marseille (LAM) Aix Marseille Université (AMU)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales Toulouse (CNES)-Centre National de la Recherche Scientifique (CNRS) Universität Bern / University of Bern (UNIBE) Physikalisches Institut Bern DLR Institute of Planetary Research German Aerospace Center (DLR) Deutsches Zentrum für Luft- und Raumfahrt (DLR) Max-Planck-Institut für Sonnensystemforschung = Max Planck Institute for Solar System Research (MPS) Max-Planck-Gesellschaft 2018 https://hal.science/hal-02108715 https://hal.science/hal-02108715/document https://hal.science/hal-02108715/file/Attree_etal_2018b.pdf https://doi.org/10.1051/0004-6361/201731937 en eng HAL CCSD EDP Sciences info:eu-repo/semantics/altIdentifier/doi/10.1051/0004-6361/201731937 hal-02108715 https://hal.science/hal-02108715 https://hal.science/hal-02108715/document https://hal.science/hal-02108715/file/Attree_etal_2018b.pdf doi:10.1051/0004-6361/201731937 info:eu-repo/semantics/OpenAccess ISSN: 0004-6361 EISSN: 1432-0756 Astronomy and Astrophysics - A&A https://hal.science/hal-02108715 Astronomy and Astrophysics - A&A, 2018, 610, pp.A76. ⟨10.1051/0004-6361/201731937⟩ comets: general comets: individual: 67P/Churyumov-Gerasimenko planets and satellites: physical evolution [SDU.ASTR]Sciences of the Universe [physics]/Astrophysics [astro-ph] info:eu-repo/semantics/article Journal articles 2018 ftinsu https://doi.org/10.1051/0004-6361/201731937 2024-01-10T17:27:35Z International audience We simulate the stresses induced by temperature changes in a putative hard layer near the surface of comet 67P/Churyumov-Gerasimenko with a thermo-viscoelastic model. Such a layer could be formed by the recondensation or sintering of water ice (and dust grains), as suggested by laboratory experiments and computer simulations, and would explain the high compressive strength encountered by experiments on board the Philae lander. Changes in temperature from seasonal insolation variation penetrate into the comet's surface to depths controlled by the thermal inertia, causing the material to expand and contract. Modelling this with a Maxwellian viscoelastic response on a spherical nucleus, we show that a hard, icy layer with similar properties to Martian permafrost will experience high stresses: up to tens of MPa, which exceed its material strength (a few MPa), down to depths of centimetres to a metre. The stress distribution with latitude is confirmed qualitatively when taking into account the comet's complex shape but neglecting thermal inertia. Stress is found to be comparable to the material strength everywhere for sufficient thermal inertia (50 J m −2 K −1 s −1/2) and ice content (45% at the equator). In this case, stresses penetrate to a typical depth of ∼0.25 m, consistent with the detection of metre-scale thermal contraction crack polygons all over the comet. Thermal fracturing may be an important erosion process on cometary surfaces which breaks down material and weakens cliffs. Article in Journal/Newspaper Ice permafrost Institut national des sciences de l'Univers: HAL-INSU Astronomy & Astrophysics 610 A76
institution Open Polar
collection Institut national des sciences de l'Univers: HAL-INSU
op_collection_id ftinsu
language English
topic comets: general
comets: individual: 67P/Churyumov-Gerasimenko
planets and satellites: physical evolution
[SDU.ASTR]Sciences of the Universe [physics]/Astrophysics [astro-ph]
spellingShingle comets: general
comets: individual: 67P/Churyumov-Gerasimenko
planets and satellites: physical evolution
[SDU.ASTR]Sciences of the Universe [physics]/Astrophysics [astro-ph]
Attree, N.
Groussin, O.
Jorda, L.
Rodionov, S.
Auger, A.-T.
Thomas, N.
Brouet, Y.
Poch, O.
Kührt, Ekkehard
Knapmeyer, M.
Preusker, F.
Scholten, F.
Knollenberg, J.
Hviid, S.
Hartogh, P.
Thermal fracturing on comets
topic_facet comets: general
comets: individual: 67P/Churyumov-Gerasimenko
planets and satellites: physical evolution
[SDU.ASTR]Sciences of the Universe [physics]/Astrophysics [astro-ph]
description International audience We simulate the stresses induced by temperature changes in a putative hard layer near the surface of comet 67P/Churyumov-Gerasimenko with a thermo-viscoelastic model. Such a layer could be formed by the recondensation or sintering of water ice (and dust grains), as suggested by laboratory experiments and computer simulations, and would explain the high compressive strength encountered by experiments on board the Philae lander. Changes in temperature from seasonal insolation variation penetrate into the comet's surface to depths controlled by the thermal inertia, causing the material to expand and contract. Modelling this with a Maxwellian viscoelastic response on a spherical nucleus, we show that a hard, icy layer with similar properties to Martian permafrost will experience high stresses: up to tens of MPa, which exceed its material strength (a few MPa), down to depths of centimetres to a metre. The stress distribution with latitude is confirmed qualitatively when taking into account the comet's complex shape but neglecting thermal inertia. Stress is found to be comparable to the material strength everywhere for sufficient thermal inertia (50 J m −2 K −1 s −1/2) and ice content (45% at the equator). In this case, stresses penetrate to a typical depth of ∼0.25 m, consistent with the detection of metre-scale thermal contraction crack polygons all over the comet. Thermal fracturing may be an important erosion process on cometary surfaces which breaks down material and weakens cliffs.
author2 Laboratoire d'Astrophysique de Marseille (LAM)
Aix Marseille Université (AMU)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales Toulouse (CNES)-Centre National de la Recherche Scientifique (CNRS)
Universität Bern / University of Bern (UNIBE)
Physikalisches Institut Bern
DLR Institute of Planetary Research
German Aerospace Center (DLR)
Deutsches Zentrum für Luft- und Raumfahrt (DLR)
Max-Planck-Institut für Sonnensystemforschung = Max Planck Institute for Solar System Research (MPS)
Max-Planck-Gesellschaft
format Article in Journal/Newspaper
author Attree, N.
Groussin, O.
Jorda, L.
Rodionov, S.
Auger, A.-T.
Thomas, N.
Brouet, Y.
Poch, O.
Kührt, Ekkehard
Knapmeyer, M.
Preusker, F.
Scholten, F.
Knollenberg, J.
Hviid, S.
Hartogh, P.
author_facet Attree, N.
Groussin, O.
Jorda, L.
Rodionov, S.
Auger, A.-T.
Thomas, N.
Brouet, Y.
Poch, O.
Kührt, Ekkehard
Knapmeyer, M.
Preusker, F.
Scholten, F.
Knollenberg, J.
Hviid, S.
Hartogh, P.
author_sort Attree, N.
title Thermal fracturing on comets
title_short Thermal fracturing on comets
title_full Thermal fracturing on comets
title_fullStr Thermal fracturing on comets
title_full_unstemmed Thermal fracturing on comets
title_sort thermal fracturing on comets
publisher HAL CCSD
publishDate 2018
url https://hal.science/hal-02108715
https://hal.science/hal-02108715/document
https://hal.science/hal-02108715/file/Attree_etal_2018b.pdf
https://doi.org/10.1051/0004-6361/201731937
genre Ice
permafrost
genre_facet Ice
permafrost
op_source ISSN: 0004-6361
EISSN: 1432-0756
Astronomy and Astrophysics - A&A
https://hal.science/hal-02108715
Astronomy and Astrophysics - A&A, 2018, 610, pp.A76. ⟨10.1051/0004-6361/201731937⟩
op_relation info:eu-repo/semantics/altIdentifier/doi/10.1051/0004-6361/201731937
hal-02108715
https://hal.science/hal-02108715
https://hal.science/hal-02108715/document
https://hal.science/hal-02108715/file/Attree_etal_2018b.pdf
doi:10.1051/0004-6361/201731937
op_rights info:eu-repo/semantics/OpenAccess
op_doi https://doi.org/10.1051/0004-6361/201731937
container_title Astronomy & Astrophysics
container_volume 610
container_start_page A76
_version_ 1789966827276730368