Warmer, deeper, and greener mixed layers in the North Atlantic subpolar gyre over the last 50 years

International audience Shifts in global climate resonate in plankton dynamics, biogeochemical cycles, and marine food webs. We studied these linkages in the North Atlantic subpolar gyre (NASG), which hosts extensive phytoplankton blooms. We show that phytoplankton abundance increased since the 1960s...

Full description

Bibliographic Details
Published in:Global Change Biology
Main Authors: Martinez, Elodie, Raitsos, Dionysios E., Antoine, David
Other Authors: Laboratoire d'océanographie de Villefranche (LOV), Observatoire océanologique de Villefranche-sur-mer (OOVM), Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Centre National de la Recherche Scientifique (CNRS)
Format: Article in Journal/Newspaper
Language:English
Published: HAL CCSD 2016
Subjects:
Online Access:https://hal.science/hal-01618459
https://hal.science/hal-01618459/document
https://hal.science/hal-01618459/file/235394_235394.pdf
https://doi.org/10.1111/gcb.13100
id ftinsu:oai:HAL:hal-01618459v1
record_format openpolar
spelling ftinsu:oai:HAL:hal-01618459v1 2024-02-11T10:06:10+01:00 Warmer, deeper, and greener mixed layers in the North Atlantic subpolar gyre over the last 50 years Martinez, Elodie Raitsos, Dionysios E. Antoine, David Laboratoire d'océanographie de Villefranche (LOV) Observatoire océanologique de Villefranche-sur-mer (OOVM) Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Centre National de la Recherche Scientifique (CNRS) 2016-02 https://hal.science/hal-01618459 https://hal.science/hal-01618459/document https://hal.science/hal-01618459/file/235394_235394.pdf https://doi.org/10.1111/gcb.13100 en eng HAL CCSD Wiley info:eu-repo/semantics/altIdentifier/doi/10.1111/gcb.13100 hal-01618459 https://hal.science/hal-01618459 https://hal.science/hal-01618459/document https://hal.science/hal-01618459/file/235394_235394.pdf doi:10.1111/gcb.13100 info:eu-repo/semantics/OpenAccess ISSN: 1354-1013 EISSN: 1365-2486 Global Change Biology https://hal.science/hal-01618459 Global Change Biology, 2016, 22 (2), pp.604 - 612. ⟨10.1111/gcb.13100⟩ [SDE]Environmental Sciences info:eu-repo/semantics/article Journal articles 2016 ftinsu https://doi.org/10.1111/gcb.13100 2024-01-24T17:31:50Z International audience Shifts in global climate resonate in plankton dynamics, biogeochemical cycles, and marine food webs. We studied these linkages in the North Atlantic subpolar gyre (NASG), which hosts extensive phytoplankton blooms. We show that phytoplankton abundance increased since the 1960s in parallel to a deepening of the mixed layer and a strengthening of winds and heat losses from the ocean, as driven by the low frequency of the North Atlantic Oscillation (NAO). In parallel to these bottom-up processes, the top-down control of phytoplankton by copepods decreased over the same time period in the western NASG, following sea surface temperature changes typical of the Atlantic Multi-decadal Oscillation (AMO). While previous studies have hypothesized that climate-driven warming would facilitate seasonal stratification of surface waters and long-term phytoplankton increase in subpolar regions, here we show that deeper mixed layers in the NASG can be warmer and host a higher phytoplankton biomass. These results emphasize that different modes of climate variability regulate bottom-up (NAO control) and top-down (AMO control) forcing on phytoplankton at decadal timescales. As a consequence, different relationships between phytoplankton, zooplankton, and their physical environment appear subject to the disparate temporal scale of the observations (seasonal, interannual, or decadal). The prediction of phytoplankton response to climate change should be built upon what is learnt from observations at the longest timescales. Article in Journal/Newspaper North Atlantic North Atlantic oscillation Copepods Institut national des sciences de l'Univers: HAL-INSU Global Change Biology 22 2 604 612
institution Open Polar
collection Institut national des sciences de l'Univers: HAL-INSU
op_collection_id ftinsu
language English
topic [SDE]Environmental Sciences
spellingShingle [SDE]Environmental Sciences
Martinez, Elodie
Raitsos, Dionysios E.
Antoine, David
Warmer, deeper, and greener mixed layers in the North Atlantic subpolar gyre over the last 50 years
topic_facet [SDE]Environmental Sciences
description International audience Shifts in global climate resonate in plankton dynamics, biogeochemical cycles, and marine food webs. We studied these linkages in the North Atlantic subpolar gyre (NASG), which hosts extensive phytoplankton blooms. We show that phytoplankton abundance increased since the 1960s in parallel to a deepening of the mixed layer and a strengthening of winds and heat losses from the ocean, as driven by the low frequency of the North Atlantic Oscillation (NAO). In parallel to these bottom-up processes, the top-down control of phytoplankton by copepods decreased over the same time period in the western NASG, following sea surface temperature changes typical of the Atlantic Multi-decadal Oscillation (AMO). While previous studies have hypothesized that climate-driven warming would facilitate seasonal stratification of surface waters and long-term phytoplankton increase in subpolar regions, here we show that deeper mixed layers in the NASG can be warmer and host a higher phytoplankton biomass. These results emphasize that different modes of climate variability regulate bottom-up (NAO control) and top-down (AMO control) forcing on phytoplankton at decadal timescales. As a consequence, different relationships between phytoplankton, zooplankton, and their physical environment appear subject to the disparate temporal scale of the observations (seasonal, interannual, or decadal). The prediction of phytoplankton response to climate change should be built upon what is learnt from observations at the longest timescales.
author2 Laboratoire d'océanographie de Villefranche (LOV)
Observatoire océanologique de Villefranche-sur-mer (OOVM)
Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Centre National de la Recherche Scientifique (CNRS)
format Article in Journal/Newspaper
author Martinez, Elodie
Raitsos, Dionysios E.
Antoine, David
author_facet Martinez, Elodie
Raitsos, Dionysios E.
Antoine, David
author_sort Martinez, Elodie
title Warmer, deeper, and greener mixed layers in the North Atlantic subpolar gyre over the last 50 years
title_short Warmer, deeper, and greener mixed layers in the North Atlantic subpolar gyre over the last 50 years
title_full Warmer, deeper, and greener mixed layers in the North Atlantic subpolar gyre over the last 50 years
title_fullStr Warmer, deeper, and greener mixed layers in the North Atlantic subpolar gyre over the last 50 years
title_full_unstemmed Warmer, deeper, and greener mixed layers in the North Atlantic subpolar gyre over the last 50 years
title_sort warmer, deeper, and greener mixed layers in the north atlantic subpolar gyre over the last 50 years
publisher HAL CCSD
publishDate 2016
url https://hal.science/hal-01618459
https://hal.science/hal-01618459/document
https://hal.science/hal-01618459/file/235394_235394.pdf
https://doi.org/10.1111/gcb.13100
genre North Atlantic
North Atlantic oscillation
Copepods
genre_facet North Atlantic
North Atlantic oscillation
Copepods
op_source ISSN: 1354-1013
EISSN: 1365-2486
Global Change Biology
https://hal.science/hal-01618459
Global Change Biology, 2016, 22 (2), pp.604 - 612. ⟨10.1111/gcb.13100⟩
op_relation info:eu-repo/semantics/altIdentifier/doi/10.1111/gcb.13100
hal-01618459
https://hal.science/hal-01618459
https://hal.science/hal-01618459/document
https://hal.science/hal-01618459/file/235394_235394.pdf
doi:10.1111/gcb.13100
op_rights info:eu-repo/semantics/OpenAccess
op_doi https://doi.org/10.1111/gcb.13100
container_title Global Change Biology
container_volume 22
container_issue 2
container_start_page 604
op_container_end_page 612
_version_ 1790603697803231232