Local Mixing Events in the Upper Troposphere and Lower Stratosphere. Part II: Seasonal and Interannual Variability

International audience The Lyapunov diffusivity is used to investigate local isentropic mixing events in the upper troposphere–lower stratosphere (UTLS) region. The diagnostic highlights the seasonal cycle of the longitudinally varying mixing properties, in particular those associated with the monso...

Full description

Bibliographic Details
Published in:Journal of the Atmospheric Sciences
Main Authors: Shuckburgh, Emily, d'Ovidio, Francesco, Legras, Bernard
Other Authors: British Antarctic Survey (BAS), Natural Environment Research Council (NERC), Laboratoire d'Océanographie et du Climat : Expérimentations et Approches Numériques (LOCEAN), Muséum national d'Histoire naturelle (MNHN)-Institut de Recherche pour le Développement (IRD)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Institut Pierre-Simon-Laplace (IPSL (FR_636)), École normale supérieure - Paris (ENS-PSL), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris Diderot - Paris 7 (UPD7)-École polytechnique (X)-Centre National d'Études Spatiales Toulouse (CNES)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-École normale supérieure - Paris (ENS-PSL), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris Diderot - Paris 7 (UPD7)-École polytechnique (X)-Centre National d'Études Spatiales Toulouse (CNES)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)
Format: Article in Journal/Newspaper
Language:English
Published: HAL CCSD 2009
Subjects:
Online Access:https://hal.science/hal-00763159
https://hal.science/hal-00763159/document
https://hal.science/hal-00763159/file/%5B15200469%20-%20Journal%20of%20the%20Atmospheric%20Sciences%5D%20Local%20Mixing%20Events%20in%20the%20Upper%20Troposphere%20and%20Lower%20Stratosphere.%20Part%20II%20Seasonal%20and%20Interannual%20Variability.pdf
https://doi.org/10.1175/2009JAS2983.1
Description
Summary:International audience The Lyapunov diffusivity is used to investigate local isentropic mixing events in the upper troposphere–lower stratosphere (UTLS) region. The diagnostic highlights the seasonal cycle of the longitudinally varying mixing properties, in particular those associated with the monsoon circulations and the westerly ducts in the subtropics. The results are broadly consistent with studies of Rossby wave–breaking frequencies. The mixing structure is shown to be modulated by modes of atmospheric variability. El Niño–Southern Oscillation (ENSO) is found to strongly influence the mixing structure throughout the tropics and subtropics. The subtropical jet is associated with longitudinal bands of mixing minima (isentropic mixing barriers) separated by synoptic-scale regions of strong mixing activity. The greatest ENSO modulation in December–February is confined to the Pacific sector, where the barriers associated with the subtropical jets extend farther into the eastern Pacific, and in the western Pacific a barrier is found at the equator during the positive phase. During June–August, the influence is seen to extend beyond the Pacific region, with the barrier at the subtropical jet in the Southern Hemisphere increasing in strength at all longitudes and with an increase in strength (and isolation of) monsoon-related mixing over Asia and North America. The local influence of the North Atlantic Oscillation in wintertime is investigated. During the positive phase, a double-barrier structure is associated with the subtropical jet, the northern branch crosses the Atlantic toward Scandinavia, and the southern branch tends toward North Africa. The Antarctic Oscillation is shown to influence whether the subvortex region is isolated from midlatitudes.