id ftinsu:oai:HAL:hal-00716454v1
record_format openpolar
spelling ftinsu:oai:HAL:hal-00716454v1 2023-12-17T10:30:28+01:00 Monitoring glacier surface seismicity in time and space using Rayleigh waves Mikesell, T.D. van Wijk, K. Haney, M. Bradford, J.H Marshall, H.P. Harper, J.T. Center for Geophysical Investigation of the Shallow Subsurface (CGISS) Boise State University Géoazur (GEOAZUR 6526) Institut de Recherche pour le Développement (IRD)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Université Nice Sophia Antipolis (1965 - 2019) (UNS)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire de la Côte d'Azur Université Côte d'Azur (UCA)-Université Côte d'Azur (UCA)-Centre National de la Recherche Scientifique (CNRS) Department of Geosciences Missoula University of Montana 2012-05-10 https://hal.science/hal-00716454 https://hal.science/hal-00716454/document https://hal.science/hal-00716454/file/2011JF002259.pdf https://doi.org/10.1029/2011JF002259 en eng HAL CCSD American Geophysical Union info:eu-repo/semantics/altIdentifier/doi/10.1029/2011JF002259 hal-00716454 https://hal.science/hal-00716454 https://hal.science/hal-00716454/document https://hal.science/hal-00716454/file/2011JF002259.pdf doi:10.1029/2011JF002259 http://hal.archives-ouvertes.fr/licences/copyright/ info:eu-repo/semantics/OpenAccess ISSN: 0148-0227 EISSN: 2156-2202 Journal of Geophysical Research https://hal.science/hal-00716454 Journal of Geophysical Research, 2012, 117, pp.F02020. ⟨10.1029/2011JF002259⟩ [SDU.STU]Sciences of the Universe [physics]/Earth Sciences info:eu-repo/semantics/article Journal articles 2012 ftinsu https://doi.org/10.1029/2011JF002259 2023-11-22T17:34:57Z International audience Sliding glaciers and brittle ice failure generate seismic body and surface wave energy characteristic to the source mechanism. Here we analyze continuous seismic recordings from an array of nine short-period passive seismometers located on Bench Glacier, Alaska (USA) (61.033°N, 145.687°W). We focus on the arrival-time and amplitude information of the dominant Rayleigh wave phase. Over a 46-hour period we detect thousands of events using a cross-correlation based event identification method. Travel-time inversion of a subset of events (7% of the total) defines an active crevasse, propagating more than 200 meters in three hours. From the Rayleigh wave amplitudes, we estimate the amount of volumetric opening along the crevasse as well as an average bulk attenuation ( Q ¯ = 42) for the ice in this part of the glacier. With the remaining icequake signals we establish a diurnal periodicity in seismicity, indicating that surface run-off and subglacial water pressure changes likely control the triggering of these surface events. Furthermore, we find that these events are too weak (i.e., too noisy) to locate individually. However, stacking individual events increases the signal-to-noise ratio of the waveforms, implying that these periodic sources are effectively stationary during the recording period Article in Journal/Newspaper glacier glaciers Alaska Institut national des sciences de l'Univers: HAL-INSU Journal of Geophysical Research: Earth Surface 117 F2 n/a n/a
institution Open Polar
collection Institut national des sciences de l'Univers: HAL-INSU
op_collection_id ftinsu
language English
topic [SDU.STU]Sciences of the Universe [physics]/Earth Sciences
spellingShingle [SDU.STU]Sciences of the Universe [physics]/Earth Sciences
Mikesell, T.D.
van Wijk, K.
Haney, M.
Bradford, J.H
Marshall, H.P.
Harper, J.T.
Monitoring glacier surface seismicity in time and space using Rayleigh waves
topic_facet [SDU.STU]Sciences of the Universe [physics]/Earth Sciences
description International audience Sliding glaciers and brittle ice failure generate seismic body and surface wave energy characteristic to the source mechanism. Here we analyze continuous seismic recordings from an array of nine short-period passive seismometers located on Bench Glacier, Alaska (USA) (61.033°N, 145.687°W). We focus on the arrival-time and amplitude information of the dominant Rayleigh wave phase. Over a 46-hour period we detect thousands of events using a cross-correlation based event identification method. Travel-time inversion of a subset of events (7% of the total) defines an active crevasse, propagating more than 200 meters in three hours. From the Rayleigh wave amplitudes, we estimate the amount of volumetric opening along the crevasse as well as an average bulk attenuation ( Q ¯ = 42) for the ice in this part of the glacier. With the remaining icequake signals we establish a diurnal periodicity in seismicity, indicating that surface run-off and subglacial water pressure changes likely control the triggering of these surface events. Furthermore, we find that these events are too weak (i.e., too noisy) to locate individually. However, stacking individual events increases the signal-to-noise ratio of the waveforms, implying that these periodic sources are effectively stationary during the recording period
author2 Center for Geophysical Investigation of the Shallow Subsurface (CGISS)
Boise State University
Géoazur (GEOAZUR 6526)
Institut de Recherche pour le Développement (IRD)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Université Nice Sophia Antipolis (1965 - 2019) (UNS)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire de la Côte d'Azur
Université Côte d'Azur (UCA)-Université Côte d'Azur (UCA)-Centre National de la Recherche Scientifique (CNRS)
Department of Geosciences Missoula
University of Montana
format Article in Journal/Newspaper
author Mikesell, T.D.
van Wijk, K.
Haney, M.
Bradford, J.H
Marshall, H.P.
Harper, J.T.
author_facet Mikesell, T.D.
van Wijk, K.
Haney, M.
Bradford, J.H
Marshall, H.P.
Harper, J.T.
author_sort Mikesell, T.D.
title Monitoring glacier surface seismicity in time and space using Rayleigh waves
title_short Monitoring glacier surface seismicity in time and space using Rayleigh waves
title_full Monitoring glacier surface seismicity in time and space using Rayleigh waves
title_fullStr Monitoring glacier surface seismicity in time and space using Rayleigh waves
title_full_unstemmed Monitoring glacier surface seismicity in time and space using Rayleigh waves
title_sort monitoring glacier surface seismicity in time and space using rayleigh waves
publisher HAL CCSD
publishDate 2012
url https://hal.science/hal-00716454
https://hal.science/hal-00716454/document
https://hal.science/hal-00716454/file/2011JF002259.pdf
https://doi.org/10.1029/2011JF002259
genre glacier
glaciers
Alaska
genre_facet glacier
glaciers
Alaska
op_source ISSN: 0148-0227
EISSN: 2156-2202
Journal of Geophysical Research
https://hal.science/hal-00716454
Journal of Geophysical Research, 2012, 117, pp.F02020. ⟨10.1029/2011JF002259⟩
op_relation info:eu-repo/semantics/altIdentifier/doi/10.1029/2011JF002259
hal-00716454
https://hal.science/hal-00716454
https://hal.science/hal-00716454/document
https://hal.science/hal-00716454/file/2011JF002259.pdf
doi:10.1029/2011JF002259
op_rights http://hal.archives-ouvertes.fr/licences/copyright/
info:eu-repo/semantics/OpenAccess
op_doi https://doi.org/10.1029/2011JF002259
container_title Journal of Geophysical Research: Earth Surface
container_volume 117
container_issue F2
container_start_page n/a
op_container_end_page n/a
_version_ 1785583445734326272