Advective Heat Transport in Frozen Rock Clefts - Conceptual Model, Laboratory Experiments and Numerical Simulation

International audience Advective heat transported by water percolating into discontinuities in frozen ground can rapidly increase temperatures at depth because it provides a thermal shortcut between the atmosphere and the subsurface. Here, we develop a conceptual model that incorporates the main hea...

Full description

Bibliographic Details
Published in:Permafrost and Periglacial Processes
Main Authors: Hasler, A., Gruber, S., Font, Marianne, Dubois, Anthony
Other Authors: Glaciology, Geomorphodynamics & Geochronology Group, Universität Zürich Zürich = University of Zurich (UZH), Morphodynamique Continentale et Côtière (M2C), Université de Caen Normandie (UNICAEN), Normandie Université (NU)-Normandie Université (NU)-Institut national des sciences de l'Univers (INSU - CNRS)-Université de Rouen Normandie (UNIROUEN), Normandie Université (NU)-Centre National de la Recherche Scientifique (CNRS)
Format: Article in Journal/Newspaper
Language:English
Published: HAL CCSD 2011
Subjects:
Ice
Online Access:https://hal.science/hal-00679024
https://doi.org/10.1002/ppp.737
id ftinsu:oai:HAL:hal-00679024v1
record_format openpolar
spelling ftinsu:oai:HAL:hal-00679024v1 2024-04-14T08:12:56+00:00 Advective Heat Transport in Frozen Rock Clefts - Conceptual Model, Laboratory Experiments and Numerical Simulation Hasler, A. Gruber, S. Font, Marianne Dubois, Anthony Glaciology, Geomorphodynamics & Geochronology Group Universität Zürich Zürich = University of Zurich (UZH) Morphodynamique Continentale et Côtière (M2C) Université de Caen Normandie (UNICAEN) Normandie Université (NU)-Normandie Université (NU)-Institut national des sciences de l'Univers (INSU - CNRS)-Université de Rouen Normandie (UNIROUEN) Normandie Université (NU)-Centre National de la Recherche Scientifique (CNRS) 2011-12-13 https://hal.science/hal-00679024 https://doi.org/10.1002/ppp.737 en eng HAL CCSD Wiley info:eu-repo/semantics/altIdentifier/doi/10.1002/ppp.737 hal-00679024 https://hal.science/hal-00679024 doi:10.1002/ppp.737 ISSN: 1045-6740 EISSN: 1099-1530 Permafrost and Periglacial Processes https://hal.science/hal-00679024 Permafrost and Periglacial Processes, 2011, 22, pp.378-389. ⟨10.1002/ppp.737⟩ rockfall numerical modelling laboratory experiment advective heat transport conductive heat transfer bedrock permafrost climate change [SDU.ENVI]Sciences of the Universe [physics]/Continental interfaces environment [SDE.MCG]Environmental Sciences/Global Changes info:eu-repo/semantics/article Journal articles 2011 ftinsu https://doi.org/10.1002/ppp.737 2024-03-21T16:58:32Z International audience Advective heat transported by water percolating into discontinuities in frozen ground can rapidly increase temperatures at depth because it provides a thermal shortcut between the atmosphere and the subsurface. Here, we develop a conceptual model that incorporates the main heat-exchange processes in a rock cleft. Laboratory experiments and numerical simulations based on the model indicate that latent heat release due to initial ice aggradation can rapidly warm cold bedrock and precondition it for later thermal erosion of cleft ice by advected sensible heat. The timing and duration of water percolation both affect the ice-level change if initial aggradation and subsequent erosion are of the same order of magnitude. The surplus advected heat is absorbed by cleft ice loss and runoff from the cleft so that this energy is not directly detectable in ground temperature records. Our findings suggest that thawing-related rockfall is possible even in cold permafrost if meltwater production and flow characteristics change significantly. Advective warming could rapidly affect failure planes beneath large rock masses and failure events could therefore differ greatly from common magnitude reaction-time relations. Article in Journal/Newspaper Ice permafrost Permafrost and Periglacial Processes Institut national des sciences de l'Univers: HAL-INSU Permafrost and Periglacial Processes 22 4 378 389
institution Open Polar
collection Institut national des sciences de l'Univers: HAL-INSU
op_collection_id ftinsu
language English
topic rockfall
numerical modelling
laboratory experiment
advective heat transport
conductive heat transfer
bedrock
permafrost
climate change
[SDU.ENVI]Sciences of the Universe [physics]/Continental interfaces
environment
[SDE.MCG]Environmental Sciences/Global Changes
spellingShingle rockfall
numerical modelling
laboratory experiment
advective heat transport
conductive heat transfer
bedrock
permafrost
climate change
[SDU.ENVI]Sciences of the Universe [physics]/Continental interfaces
environment
[SDE.MCG]Environmental Sciences/Global Changes
Hasler, A.
Gruber, S.
Font, Marianne
Dubois, Anthony
Advective Heat Transport in Frozen Rock Clefts - Conceptual Model, Laboratory Experiments and Numerical Simulation
topic_facet rockfall
numerical modelling
laboratory experiment
advective heat transport
conductive heat transfer
bedrock
permafrost
climate change
[SDU.ENVI]Sciences of the Universe [physics]/Continental interfaces
environment
[SDE.MCG]Environmental Sciences/Global Changes
description International audience Advective heat transported by water percolating into discontinuities in frozen ground can rapidly increase temperatures at depth because it provides a thermal shortcut between the atmosphere and the subsurface. Here, we develop a conceptual model that incorporates the main heat-exchange processes in a rock cleft. Laboratory experiments and numerical simulations based on the model indicate that latent heat release due to initial ice aggradation can rapidly warm cold bedrock and precondition it for later thermal erosion of cleft ice by advected sensible heat. The timing and duration of water percolation both affect the ice-level change if initial aggradation and subsequent erosion are of the same order of magnitude. The surplus advected heat is absorbed by cleft ice loss and runoff from the cleft so that this energy is not directly detectable in ground temperature records. Our findings suggest that thawing-related rockfall is possible even in cold permafrost if meltwater production and flow characteristics change significantly. Advective warming could rapidly affect failure planes beneath large rock masses and failure events could therefore differ greatly from common magnitude reaction-time relations.
author2 Glaciology, Geomorphodynamics & Geochronology Group
Universität Zürich Zürich = University of Zurich (UZH)
Morphodynamique Continentale et Côtière (M2C)
Université de Caen Normandie (UNICAEN)
Normandie Université (NU)-Normandie Université (NU)-Institut national des sciences de l'Univers (INSU - CNRS)-Université de Rouen Normandie (UNIROUEN)
Normandie Université (NU)-Centre National de la Recherche Scientifique (CNRS)
format Article in Journal/Newspaper
author Hasler, A.
Gruber, S.
Font, Marianne
Dubois, Anthony
author_facet Hasler, A.
Gruber, S.
Font, Marianne
Dubois, Anthony
author_sort Hasler, A.
title Advective Heat Transport in Frozen Rock Clefts - Conceptual Model, Laboratory Experiments and Numerical Simulation
title_short Advective Heat Transport in Frozen Rock Clefts - Conceptual Model, Laboratory Experiments and Numerical Simulation
title_full Advective Heat Transport in Frozen Rock Clefts - Conceptual Model, Laboratory Experiments and Numerical Simulation
title_fullStr Advective Heat Transport in Frozen Rock Clefts - Conceptual Model, Laboratory Experiments and Numerical Simulation
title_full_unstemmed Advective Heat Transport in Frozen Rock Clefts - Conceptual Model, Laboratory Experiments and Numerical Simulation
title_sort advective heat transport in frozen rock clefts - conceptual model, laboratory experiments and numerical simulation
publisher HAL CCSD
publishDate 2011
url https://hal.science/hal-00679024
https://doi.org/10.1002/ppp.737
genre Ice
permafrost
Permafrost and Periglacial Processes
genre_facet Ice
permafrost
Permafrost and Periglacial Processes
op_source ISSN: 1045-6740
EISSN: 1099-1530
Permafrost and Periglacial Processes
https://hal.science/hal-00679024
Permafrost and Periglacial Processes, 2011, 22, pp.378-389. ⟨10.1002/ppp.737⟩
op_relation info:eu-repo/semantics/altIdentifier/doi/10.1002/ppp.737
hal-00679024
https://hal.science/hal-00679024
doi:10.1002/ppp.737
op_doi https://doi.org/10.1002/ppp.737
container_title Permafrost and Periglacial Processes
container_volume 22
container_issue 4
container_start_page 378
op_container_end_page 389
_version_ 1796310777907380224