The importance of the terrigenous fraction within a cold-water coral mound : A case study

International audience In the nineties, cold-water coral mounds were discovered in the Porcupine Seabight (NE Atlantic. west of Ireland). A decade later, this discovery led to the drilling of the entire Challenger cold-water coral mound (Eastern slope, Porcupine Seabight) during IODP Expedition 307....

Full description

Bibliographic Details
Published in:Marine Geology
Main Authors: Pirlet, A.S., Colin, Christophe, Thierens, M., Latruwe, K., van Rooj, D., Foubert, A., Frank, N., Blamart, D., Veerle Huvenne, A.I., Vanhaecke, F., Henriet, J.P.
Other Authors: Renard Centre of Marine Geology, Universiteit Gent = Ghent University (UGENT), Interactions et dynamique des environnements de surface (IDES), Université Paris-Sud - Paris 11 (UP11)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS), School of Biological, Earth and Environmental Sciences Cork (BEES), University College Cork (UCC), Dpt of Analytical Chemistry, RCMG Ghent, Department of Earth and Environmental Sciences, K.U. Leuven, Université Catholique de Louvain = Catholic University of Louvain (UCL), Laboratoire des Sciences du Climat et de l'Environnement Gif-sur-Yvette (LSCE), Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Direction de Recherche Fondamentale (CEA) (DRF (CEA)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA), Géochrononologie Traceurs Archéométrie (GEOTRAC), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Direction de Recherche Fondamentale (CEA) (DRF (CEA)), Paléocéanographie (PALEOCEAN), Dpt of Geology & Geophysics, National Oceanography Centre (NOC)
Format: Article in Journal/Newspaper
Language:English
Published: HAL CCSD 2011
Subjects:
Online Access:https://hal.science/hal-00511406
https://doi.org/10.1016/j.margeo.2010.05.008
id ftinsu:oai:HAL:hal-00511406v1
record_format openpolar
institution Open Polar
collection Institut national des sciences de l'Univers: HAL-INSU
op_collection_id ftinsu
language English
topic [SDU.STU]Sciences of the Universe [physics]/Earth Sciences
spellingShingle [SDU.STU]Sciences of the Universe [physics]/Earth Sciences
Pirlet, A.S.
Colin, Christophe
Thierens, M.
Latruwe, K.
van Rooj, D.
Foubert, A.
Frank, N.
Blamart, D.
Veerle Huvenne, A.I.
Vanhaecke, F.
Henriet, J.P.
The importance of the terrigenous fraction within a cold-water coral mound : A case study
topic_facet [SDU.STU]Sciences of the Universe [physics]/Earth Sciences
description International audience In the nineties, cold-water coral mounds were discovered in the Porcupine Seabight (NE Atlantic. west of Ireland). A decade later, this discovery led to the drilling of the entire Challenger cold-water coral mound (Eastern slope, Porcupine Seabight) during IODP Expedition 307. As more than 50% of the sediment within Challenger Mound consists of terrigenous material, the terrigenous component is equally important for the build-up of the mound as the framework-building corals. Moreover, the terrigenous fraction contains important information on the dynamics and the conditions of the depositional environment during mound development. In this study, the first in-depth investigation of the terrigenous sediment fraction of a cold-water coral mound is performed, combining clay mineralogy, sedimentology, petrography and Sr-Nd-isotopic analysis on a gravity core (MD01-2451G) collected at the top of Challenger Mound. Sr- and Nd-isotopic fingerprinting identifies Ireland as the main contributor of terrigenous material in Challenger Mound. Besides this, a variable input of volcanic material from the northern volcanic provinces (Iceland and/or the NW British Isles) is recognized in most of the samples. This volcanic material was most likely transported to Challenger Mound during cold climatic stages. In three samples, the isotopic ratios indicate a minor contribution of sediment deriving from the old cratons on Greenland, Scandinavia or Canada. The grain-size distributions of glacial sediments demonstrate that ice-rafted debris was deposited with little or no sorting, indicating a slow bottom-current regime. In contrast, interglacial intervals contain strongly current-sorted sediments, including reworked glacio-marine grains. The micro textures of the quartz-sand grains confirm the presence of grains transported by icebergs in interglacial intervals. These observations highlight the role of ice-rafting as an important transport mechanism of terrigenous material towards the mound during the Late ...
author2 Renard Centre of Marine Geology
Universiteit Gent = Ghent University (UGENT)
Interactions et dynamique des environnements de surface (IDES)
Université Paris-Sud - Paris 11 (UP11)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)
School of Biological, Earth and Environmental Sciences Cork (BEES)
University College Cork (UCC)
Dpt of Analytical Chemistry
RCMG Ghent
Department of Earth and Environmental Sciences, K.U. Leuven
Université Catholique de Louvain = Catholic University of Louvain (UCL)
Laboratoire des Sciences du Climat et de l'Environnement Gif-sur-Yvette (LSCE)
Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Direction de Recherche Fondamentale (CEA) (DRF (CEA))
Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)
Géochrononologie Traceurs Archéométrie (GEOTRAC)
Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Direction de Recherche Fondamentale (CEA) (DRF (CEA))
Paléocéanographie (PALEOCEAN)
Dpt of Geology & Geophysics
National Oceanography Centre (NOC)
format Article in Journal/Newspaper
author Pirlet, A.S.
Colin, Christophe
Thierens, M.
Latruwe, K.
van Rooj, D.
Foubert, A.
Frank, N.
Blamart, D.
Veerle Huvenne, A.I.
Vanhaecke, F.
Henriet, J.P.
author_facet Pirlet, A.S.
Colin, Christophe
Thierens, M.
Latruwe, K.
van Rooj, D.
Foubert, A.
Frank, N.
Blamart, D.
Veerle Huvenne, A.I.
Vanhaecke, F.
Henriet, J.P.
author_sort Pirlet, A.S.
title The importance of the terrigenous fraction within a cold-water coral mound : A case study
title_short The importance of the terrigenous fraction within a cold-water coral mound : A case study
title_full The importance of the terrigenous fraction within a cold-water coral mound : A case study
title_fullStr The importance of the terrigenous fraction within a cold-water coral mound : A case study
title_full_unstemmed The importance of the terrigenous fraction within a cold-water coral mound : A case study
title_sort importance of the terrigenous fraction within a cold-water coral mound : a case study
publisher HAL CCSD
publishDate 2011
url https://hal.science/hal-00511406
https://doi.org/10.1016/j.margeo.2010.05.008
genre Greenland
Iceland
genre_facet Greenland
Iceland
op_source ISSN: 0025-3227
Marine Geology
https://hal.science/hal-00511406
Marine Geology, 2011, 282 (sp.1-2), pp.13-25. ⟨10.1016/j.margeo.2010.05.008⟩
op_relation info:eu-repo/semantics/altIdentifier/doi/10.1016/j.margeo.2010.05.008
hal-00511406
https://hal.science/hal-00511406
doi:10.1016/j.margeo.2010.05.008
op_doi https://doi.org/10.1016/j.margeo.2010.05.008
container_title Marine Geology
container_volume 282
container_issue 1-2
container_start_page 13
op_container_end_page 25
_version_ 1797584057379323904
spelling ftinsu:oai:HAL:hal-00511406v1 2024-04-28T08:22:27+00:00 The importance of the terrigenous fraction within a cold-water coral mound : A case study Pirlet, A.S. Colin, Christophe Thierens, M. Latruwe, K. van Rooj, D. Foubert, A. Frank, N. Blamart, D. Veerle Huvenne, A.I. Vanhaecke, F. Henriet, J.P. Renard Centre of Marine Geology Universiteit Gent = Ghent University (UGENT) Interactions et dynamique des environnements de surface (IDES) Université Paris-Sud - Paris 11 (UP11)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS) School of Biological, Earth and Environmental Sciences Cork (BEES) University College Cork (UCC) Dpt of Analytical Chemistry RCMG Ghent Department of Earth and Environmental Sciences, K.U. Leuven Université Catholique de Louvain = Catholic University of Louvain (UCL) Laboratoire des Sciences du Climat et de l'Environnement Gif-sur-Yvette (LSCE) Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Direction de Recherche Fondamentale (CEA) (DRF (CEA)) Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA) Géochrononologie Traceurs Archéométrie (GEOTRAC) Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Direction de Recherche Fondamentale (CEA) (DRF (CEA)) Paléocéanographie (PALEOCEAN) Dpt of Geology & Geophysics National Oceanography Centre (NOC) 2011 https://hal.science/hal-00511406 https://doi.org/10.1016/j.margeo.2010.05.008 en eng HAL CCSD Elsevier info:eu-repo/semantics/altIdentifier/doi/10.1016/j.margeo.2010.05.008 hal-00511406 https://hal.science/hal-00511406 doi:10.1016/j.margeo.2010.05.008 ISSN: 0025-3227 Marine Geology https://hal.science/hal-00511406 Marine Geology, 2011, 282 (sp.1-2), pp.13-25. ⟨10.1016/j.margeo.2010.05.008⟩ [SDU.STU]Sciences of the Universe [physics]/Earth Sciences info:eu-repo/semantics/article Journal articles 2011 ftinsu https://doi.org/10.1016/j.margeo.2010.05.008 2024-04-05T00:25:18Z International audience In the nineties, cold-water coral mounds were discovered in the Porcupine Seabight (NE Atlantic. west of Ireland). A decade later, this discovery led to the drilling of the entire Challenger cold-water coral mound (Eastern slope, Porcupine Seabight) during IODP Expedition 307. As more than 50% of the sediment within Challenger Mound consists of terrigenous material, the terrigenous component is equally important for the build-up of the mound as the framework-building corals. Moreover, the terrigenous fraction contains important information on the dynamics and the conditions of the depositional environment during mound development. In this study, the first in-depth investigation of the terrigenous sediment fraction of a cold-water coral mound is performed, combining clay mineralogy, sedimentology, petrography and Sr-Nd-isotopic analysis on a gravity core (MD01-2451G) collected at the top of Challenger Mound. Sr- and Nd-isotopic fingerprinting identifies Ireland as the main contributor of terrigenous material in Challenger Mound. Besides this, a variable input of volcanic material from the northern volcanic provinces (Iceland and/or the NW British Isles) is recognized in most of the samples. This volcanic material was most likely transported to Challenger Mound during cold climatic stages. In three samples, the isotopic ratios indicate a minor contribution of sediment deriving from the old cratons on Greenland, Scandinavia or Canada. The grain-size distributions of glacial sediments demonstrate that ice-rafted debris was deposited with little or no sorting, indicating a slow bottom-current regime. In contrast, interglacial intervals contain strongly current-sorted sediments, including reworked glacio-marine grains. The micro textures of the quartz-sand grains confirm the presence of grains transported by icebergs in interglacial intervals. These observations highlight the role of ice-rafting as an important transport mechanism of terrigenous material towards the mound during the Late ... Article in Journal/Newspaper Greenland Iceland Institut national des sciences de l'Univers: HAL-INSU Marine Geology 282 1-2 13 25