Differences in Arctic and Antarctic PSC occurrence as observed by lidar in Ny-Ålesund (79° N, 12° E) and McMurdo (78° S, 167° E)

International audience The extent of springtime Arctic ozone loss does not reach Antarctic "ozone hole" dimensions because of the generally higher temperatures in the northern hemisphere vortex and consequent less polar stratospheric cloud (PSC) particle surface for heterogeneous chlorine...

Full description

Bibliographic Details
Main Authors: Müller, M., Neuber, R., Massoli, P., Cairo, F., Adriani, A., Moriconi, M. L., Di Donfrancesco, G.
Other Authors: Department of Bentho-pelagic processes, Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung = Alfred Wegener Institute for Polar and Marine Research = Institut Alfred-Wegener pour la recherche polaire et marine (AWI), Helmholtz-Gemeinschaft = Helmholtz Association-Helmholtz-Gemeinschaft = Helmholtz Association, CNR Institute of Atmospheric Sciences and Climate (ISAC), National Research Council of Italy, Italian National Agency for New Technologies, Energy and Environment
Format: Article in Journal/Newspaper
Language:English
Published: HAL CCSD 2004
Subjects:
Online Access:https://hal.science/hal-00301481
https://hal.science/hal-00301481/document
https://hal.science/hal-00301481/file/acpd-4-6837-2004.pdf
id ftinsu:oai:HAL:hal-00301481v1
record_format openpolar
spelling ftinsu:oai:HAL:hal-00301481v1 2024-02-11T09:58:03+01:00 Differences in Arctic and Antarctic PSC occurrence as observed by lidar in Ny-Ålesund (79° N, 12° E) and McMurdo (78° S, 167° E) Müller, M. Neuber, R. Massoli, P. Cairo, F. Adriani, A. Moriconi, M. L. Di Donfrancesco, G. Department of Bentho-pelagic processes Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung = Alfred Wegener Institute for Polar and Marine Research = Institut Alfred-Wegener pour la recherche polaire et marine (AWI) Helmholtz-Gemeinschaft = Helmholtz Association-Helmholtz-Gemeinschaft = Helmholtz Association CNR Institute of Atmospheric Sciences and Climate (ISAC) National Research Council of Italy Italian National Agency for New Technologies Energy and Environment 2004-10-26 https://hal.science/hal-00301481 https://hal.science/hal-00301481/document https://hal.science/hal-00301481/file/acpd-4-6837-2004.pdf en eng HAL CCSD European Geosciences Union hal-00301481 https://hal.science/hal-00301481 https://hal.science/hal-00301481/document https://hal.science/hal-00301481/file/acpd-4-6837-2004.pdf info:eu-repo/semantics/OpenAccess ISSN: 1680-7367 EISSN: 1680-7375 Atmospheric Chemistry and Physics Discussions https://hal.science/hal-00301481 Atmospheric Chemistry and Physics Discussions, 2004, 4 (5), pp.6837-6866 [SDU.OCEAN]Sciences of the Universe [physics]/Ocean Atmosphere info:eu-repo/semantics/article Journal articles 2004 ftinsu 2024-01-17T17:27:19Z International audience The extent of springtime Arctic ozone loss does not reach Antarctic "ozone hole" dimensions because of the generally higher temperatures in the northern hemisphere vortex and consequent less polar stratospheric cloud (PSC) particle surface for heterogeneous chlorine activation. Yet, with increasing greenhouse gases stratospheric temperatures are expected to further decrease. To infer if present Antarctic PSC occurrence can be applied to predict future Arctic PSC occurrence, lidar observations from McMurdo station (78° S, 167° E) and Ny-Ålesund (79° N, 12° E) have been analysed for the 9 winters between 1995 (1995/1996) and 2003 (2003/2004). Although the statistics may not completely cover the overall hemispheric PSC occurrence, the observations are considered to represent the main synoptic cloud features as both stations are mostly situated in the centre or at the inner edge of the vortex. Since the focus is set on the occurrence frequency of solid and liquid particles, the analysis has been restricted to volcanic aerosol free conditions. In McMurdo, by far the largest part of PSC observations is associated with PSC type Ia. The observed constant background of NAT particles and their potential ability to cause denoxification and irreversible denitrification is presumably more important to Antarctic ozone chemistry than the scarcely observed PSC type II. Meanwhile in Ny-Ålesund, PSC type II has never been observed, while type Ia and Ib both occur in large fraction. Although they are also found solely, the majority of observations reveals solid and liquid particle layers in the same profile. For the Ny-Ålesund measurements, the frequent occurrence of liquid PSC particles yields major significance in terms of ozone chemistry, as their chlorine activation rates are more efficient. The relationship between temperature, PSC formation, and denitrification is nonlinear and the McMurdo and Ny-Ålesund PSC observations imply that for predicted stratospheric cooling it is not possible to directly ... Article in Journal/Newspaper Antarc* Antarctic Arctic Ny Ålesund Ny-Ålesund Institut national des sciences de l'Univers: HAL-INSU Arctic Antarctic Ny-Ålesund McMurdo Station ENVELOPE(166.667,166.667,-77.850,-77.850)
institution Open Polar
collection Institut national des sciences de l'Univers: HAL-INSU
op_collection_id ftinsu
language English
topic [SDU.OCEAN]Sciences of the Universe [physics]/Ocean
Atmosphere
spellingShingle [SDU.OCEAN]Sciences of the Universe [physics]/Ocean
Atmosphere
Müller, M.
Neuber, R.
Massoli, P.
Cairo, F.
Adriani, A.
Moriconi, M. L.
Di Donfrancesco, G.
Differences in Arctic and Antarctic PSC occurrence as observed by lidar in Ny-Ålesund (79° N, 12° E) and McMurdo (78° S, 167° E)
topic_facet [SDU.OCEAN]Sciences of the Universe [physics]/Ocean
Atmosphere
description International audience The extent of springtime Arctic ozone loss does not reach Antarctic "ozone hole" dimensions because of the generally higher temperatures in the northern hemisphere vortex and consequent less polar stratospheric cloud (PSC) particle surface for heterogeneous chlorine activation. Yet, with increasing greenhouse gases stratospheric temperatures are expected to further decrease. To infer if present Antarctic PSC occurrence can be applied to predict future Arctic PSC occurrence, lidar observations from McMurdo station (78° S, 167° E) and Ny-Ålesund (79° N, 12° E) have been analysed for the 9 winters between 1995 (1995/1996) and 2003 (2003/2004). Although the statistics may not completely cover the overall hemispheric PSC occurrence, the observations are considered to represent the main synoptic cloud features as both stations are mostly situated in the centre or at the inner edge of the vortex. Since the focus is set on the occurrence frequency of solid and liquid particles, the analysis has been restricted to volcanic aerosol free conditions. In McMurdo, by far the largest part of PSC observations is associated with PSC type Ia. The observed constant background of NAT particles and their potential ability to cause denoxification and irreversible denitrification is presumably more important to Antarctic ozone chemistry than the scarcely observed PSC type II. Meanwhile in Ny-Ålesund, PSC type II has never been observed, while type Ia and Ib both occur in large fraction. Although they are also found solely, the majority of observations reveals solid and liquid particle layers in the same profile. For the Ny-Ålesund measurements, the frequent occurrence of liquid PSC particles yields major significance in terms of ozone chemistry, as their chlorine activation rates are more efficient. The relationship between temperature, PSC formation, and denitrification is nonlinear and the McMurdo and Ny-Ålesund PSC observations imply that for predicted stratospheric cooling it is not possible to directly ...
author2 Department of Bentho-pelagic processes
Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung = Alfred Wegener Institute for Polar and Marine Research = Institut Alfred-Wegener pour la recherche polaire et marine (AWI)
Helmholtz-Gemeinschaft = Helmholtz Association-Helmholtz-Gemeinschaft = Helmholtz Association
CNR Institute of Atmospheric Sciences and Climate (ISAC)
National Research Council of Italy
Italian National Agency for New Technologies
Energy and Environment
format Article in Journal/Newspaper
author Müller, M.
Neuber, R.
Massoli, P.
Cairo, F.
Adriani, A.
Moriconi, M. L.
Di Donfrancesco, G.
author_facet Müller, M.
Neuber, R.
Massoli, P.
Cairo, F.
Adriani, A.
Moriconi, M. L.
Di Donfrancesco, G.
author_sort Müller, M.
title Differences in Arctic and Antarctic PSC occurrence as observed by lidar in Ny-Ålesund (79° N, 12° E) and McMurdo (78° S, 167° E)
title_short Differences in Arctic and Antarctic PSC occurrence as observed by lidar in Ny-Ålesund (79° N, 12° E) and McMurdo (78° S, 167° E)
title_full Differences in Arctic and Antarctic PSC occurrence as observed by lidar in Ny-Ålesund (79° N, 12° E) and McMurdo (78° S, 167° E)
title_fullStr Differences in Arctic and Antarctic PSC occurrence as observed by lidar in Ny-Ålesund (79° N, 12° E) and McMurdo (78° S, 167° E)
title_full_unstemmed Differences in Arctic and Antarctic PSC occurrence as observed by lidar in Ny-Ålesund (79° N, 12° E) and McMurdo (78° S, 167° E)
title_sort differences in arctic and antarctic psc occurrence as observed by lidar in ny-ålesund (79° n, 12° e) and mcmurdo (78° s, 167° e)
publisher HAL CCSD
publishDate 2004
url https://hal.science/hal-00301481
https://hal.science/hal-00301481/document
https://hal.science/hal-00301481/file/acpd-4-6837-2004.pdf
long_lat ENVELOPE(166.667,166.667,-77.850,-77.850)
geographic Arctic
Antarctic
Ny-Ålesund
McMurdo Station
geographic_facet Arctic
Antarctic
Ny-Ålesund
McMurdo Station
genre Antarc*
Antarctic
Arctic
Ny Ålesund
Ny-Ålesund
genre_facet Antarc*
Antarctic
Arctic
Ny Ålesund
Ny-Ålesund
op_source ISSN: 1680-7367
EISSN: 1680-7375
Atmospheric Chemistry and Physics Discussions
https://hal.science/hal-00301481
Atmospheric Chemistry and Physics Discussions, 2004, 4 (5), pp.6837-6866
op_relation hal-00301481
https://hal.science/hal-00301481
https://hal.science/hal-00301481/document
https://hal.science/hal-00301481/file/acpd-4-6837-2004.pdf
op_rights info:eu-repo/semantics/OpenAccess
_version_ 1790593620833730560