High resolution simulation of recent Arctic and Antarctic stratospheric chemical ozone loss compared to observations
Simulations of polar ozone losses were performed using the three-dimensional high-resolution (1∘ × 1∘) chemical transport model MIMOSA-CHIM. Three Arctic winters 1999–2000, 2001–2002, 2002–2003 and three Antarctic winters 2001, 2002, and 2003 were considered for the study. The cumulative ozone loss...
Published in: | Journal of Atmospheric Chemistry |
---|---|
Main Authors: | , , , , , , , , , , , , , , , , |
Other Authors: | , , , , , , , , , , , , , , , , , , , |
Format: | Article in Journal/Newspaper |
Language: | English |
Published: |
HAL CCSD
2006
|
Subjects: | |
Online Access: | https://hal.science/hal-00141732 https://doi.org/10.1007/s10874-006-9028-8 |
id |
ftinsu:oai:HAL:hal-00141732v1 |
---|---|
record_format |
openpolar |
institution |
Open Polar |
collection |
Institut national des sciences de l'Univers: HAL-INSU |
op_collection_id |
ftinsu |
language |
English |
topic |
Comparison with observations High-resolution 3-D chemical transport model Ozone loss Stratospheric chemistry Polar ozone Sensitivity tests [PHYS.PHYS.PHYS-AO-PH]Physics [physics]/Physics [physics]/Atmospheric and Oceanic Physics [physics.ao-ph] |
spellingShingle |
Comparison with observations High-resolution 3-D chemical transport model Ozone loss Stratospheric chemistry Polar ozone Sensitivity tests [PHYS.PHYS.PHYS-AO-PH]Physics [physics]/Physics [physics]/Atmospheric and Oceanic Physics [physics.ao-ph] Tripathi, Om Prakash Godin-Beekmann, Sophie Lefèvre, Franck Marchand, Marion Pazmino, Andrea Hauchecorne, Alain Goutail, Florence Schlager, Hans Volk, Michael Johnson, B. König-Langlo, G. Balestri, Stefano Stroh, Fred Bui, T.P. Jost, H.J. Deshler, T. von Der Gathen, Peter High resolution simulation of recent Arctic and Antarctic stratospheric chemical ozone loss compared to observations |
topic_facet |
Comparison with observations High-resolution 3-D chemical transport model Ozone loss Stratospheric chemistry Polar ozone Sensitivity tests [PHYS.PHYS.PHYS-AO-PH]Physics [physics]/Physics [physics]/Atmospheric and Oceanic Physics [physics.ao-ph] |
description |
Simulations of polar ozone losses were performed using the three-dimensional high-resolution (1∘ × 1∘) chemical transport model MIMOSA-CHIM. Three Arctic winters 1999–2000, 2001–2002, 2002–2003 and three Antarctic winters 2001, 2002, and 2003 were considered for the study. The cumulative ozone loss in the Arctic winter 2002–2003 reached around 35% at 475 K inside the vortex, as compared to more than 60% in 1999–2000. During 1999–2000, denitrification induces a maximum of about 23% extra ozone loss at 475 K as compared to 17% in 2002–2003. Unlike these two colder Arctic winters, the 2001–2002 Arctic was warmer and did not experience much ozone loss. Sensitivity tests showed that the chosen resolution of 1∘ × 1∘ provides a better evaluation of ozone loss at the edge of the polar vortex in high solar zenith angle conditions. The simulation results for ozone, ClO, HNO3, N2O, and NO y for winters 1999–2000 and 2002–2003 were compared with measurements on board ER-2 and Geophysica aircraft respectively. Sensitivity tests showed that increasing heating rates calculated by the model by 50% and doubling the PSC (Polar Stratospheric Clouds) particle density (from 5 × 10−3 to 10−2 cm−3) refines the agreement with in situ ozone, N2O and NO y levels. In this configuration, simulated ClO levels are increased and are in better agreement with observations in January but are overestimated by about 20% in March. The use of the Burkholder et al. (1990) Cl2O2 absorption cross-sections slightly increases further ClO levels especially in high solar zenith angle conditions. Comparisons of the modelled ozone values with ozonesonde measurement in the Antarctic winter 2003 and with Polar Ozone and Aerosol Measurement III (POAM III) measurements in the Antarctic winters 2001 and 2002, shows that the simulations underestimate the ozone loss rate at the end of the ozone destruction period. A slightly better agreement is obtained with the use of Burkholder et al. (1990) Cl2O2 absorption cross-sections. |
author2 |
Service d'aéronomie (SA) Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS) Jet Propulsion Laboratory (JPL) NASA-California Institute of Technology (CALTECH) DLR Institut für Physik der Atmosphäre (IPA) Deutsches Zentrum für Luft- und Raumfahrt Oberpfaffenhofen-Wessling (DLR) Institut für Atmosphäre und Umwelt Frankfurt/Main (IAU) Goethe-Universität Frankfurt am Main NOAA Climate Monitoring and Diagnostics Laboratory (CMDL) National Oceanic and Atmospheric Administration (NOAA) Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung = Alfred Wegener Institute for Polar and Marine Research = Institut Alfred-Wegener pour la recherche polaire et marine (AWI) Helmholtz-Gemeinschaft = Helmholtz Association ABR, Inc. - Environmental Research and Services Institut für Chemie und Dynamik der Geosphäre - Stratosphäre (ICG-1) Forschungszentrum Jülich GmbH Helmholtz-Gemeinschaft = Helmholtz Association-Helmholtz-Gemeinschaft = Helmholtz Association NASA Ames Research Center (ARC) Bay Area Environmental Research Institute (BAER) Department of Atmospheric Science Laramie University of Wyoming (UW) |
format |
Article in Journal/Newspaper |
author |
Tripathi, Om Prakash Godin-Beekmann, Sophie Lefèvre, Franck Marchand, Marion Pazmino, Andrea Hauchecorne, Alain Goutail, Florence Schlager, Hans Volk, Michael Johnson, B. König-Langlo, G. Balestri, Stefano Stroh, Fred Bui, T.P. Jost, H.J. Deshler, T. von Der Gathen, Peter |
author_facet |
Tripathi, Om Prakash Godin-Beekmann, Sophie Lefèvre, Franck Marchand, Marion Pazmino, Andrea Hauchecorne, Alain Goutail, Florence Schlager, Hans Volk, Michael Johnson, B. König-Langlo, G. Balestri, Stefano Stroh, Fred Bui, T.P. Jost, H.J. Deshler, T. von Der Gathen, Peter |
author_sort |
Tripathi, Om Prakash |
title |
High resolution simulation of recent Arctic and Antarctic stratospheric chemical ozone loss compared to observations |
title_short |
High resolution simulation of recent Arctic and Antarctic stratospheric chemical ozone loss compared to observations |
title_full |
High resolution simulation of recent Arctic and Antarctic stratospheric chemical ozone loss compared to observations |
title_fullStr |
High resolution simulation of recent Arctic and Antarctic stratospheric chemical ozone loss compared to observations |
title_full_unstemmed |
High resolution simulation of recent Arctic and Antarctic stratospheric chemical ozone loss compared to observations |
title_sort |
high resolution simulation of recent arctic and antarctic stratospheric chemical ozone loss compared to observations |
publisher |
HAL CCSD |
publishDate |
2006 |
url |
https://hal.science/hal-00141732 https://doi.org/10.1007/s10874-006-9028-8 |
geographic |
Arctic Antarctic The Antarctic |
geographic_facet |
Arctic Antarctic The Antarctic |
genre |
Antarc* Antarctic Arctic |
genre_facet |
Antarc* Antarctic Arctic |
op_source |
ISSN: 0167-7764 EISSN: 1573-0662 Journal of Atmospheric Chemistry https://hal.science/hal-00141732 Journal of Atmospheric Chemistry, 2006, 55 (3), pp.205-226. ⟨10.1007/s10874-006-9028-8⟩ |
op_relation |
info:eu-repo/semantics/altIdentifier/doi/10.1007/s10874-006-9028-8 hal-00141732 https://hal.science/hal-00141732 doi:10.1007/s10874-006-9028-8 |
op_doi |
https://doi.org/10.1007/s10874-006-9028-8 |
container_title |
Journal of Atmospheric Chemistry |
container_volume |
55 |
container_issue |
3 |
container_start_page |
205 |
op_container_end_page |
226 |
_version_ |
1790593264399679488 |
spelling |
ftinsu:oai:HAL:hal-00141732v1 2024-02-11T09:57:43+01:00 High resolution simulation of recent Arctic and Antarctic stratospheric chemical ozone loss compared to observations Tripathi, Om Prakash Godin-Beekmann, Sophie Lefèvre, Franck Marchand, Marion Pazmino, Andrea Hauchecorne, Alain Goutail, Florence Schlager, Hans Volk, Michael Johnson, B. König-Langlo, G. Balestri, Stefano Stroh, Fred Bui, T.P. Jost, H.J. Deshler, T. von Der Gathen, Peter Service d'aéronomie (SA) Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS) Jet Propulsion Laboratory (JPL) NASA-California Institute of Technology (CALTECH) DLR Institut für Physik der Atmosphäre (IPA) Deutsches Zentrum für Luft- und Raumfahrt Oberpfaffenhofen-Wessling (DLR) Institut für Atmosphäre und Umwelt Frankfurt/Main (IAU) Goethe-Universität Frankfurt am Main NOAA Climate Monitoring and Diagnostics Laboratory (CMDL) National Oceanic and Atmospheric Administration (NOAA) Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung = Alfred Wegener Institute for Polar and Marine Research = Institut Alfred-Wegener pour la recherche polaire et marine (AWI) Helmholtz-Gemeinschaft = Helmholtz Association ABR, Inc. - Environmental Research and Services Institut für Chemie und Dynamik der Geosphäre - Stratosphäre (ICG-1) Forschungszentrum Jülich GmbH Helmholtz-Gemeinschaft = Helmholtz Association-Helmholtz-Gemeinschaft = Helmholtz Association NASA Ames Research Center (ARC) Bay Area Environmental Research Institute (BAER) Department of Atmospheric Science Laramie University of Wyoming (UW) 2006 https://hal.science/hal-00141732 https://doi.org/10.1007/s10874-006-9028-8 en eng HAL CCSD Springer Verlag info:eu-repo/semantics/altIdentifier/doi/10.1007/s10874-006-9028-8 hal-00141732 https://hal.science/hal-00141732 doi:10.1007/s10874-006-9028-8 ISSN: 0167-7764 EISSN: 1573-0662 Journal of Atmospheric Chemistry https://hal.science/hal-00141732 Journal of Atmospheric Chemistry, 2006, 55 (3), pp.205-226. ⟨10.1007/s10874-006-9028-8⟩ Comparison with observations High-resolution 3-D chemical transport model Ozone loss Stratospheric chemistry Polar ozone Sensitivity tests [PHYS.PHYS.PHYS-AO-PH]Physics [physics]/Physics [physics]/Atmospheric and Oceanic Physics [physics.ao-ph] info:eu-repo/semantics/article Journal articles 2006 ftinsu https://doi.org/10.1007/s10874-006-9028-8 2024-01-17T17:29:46Z Simulations of polar ozone losses were performed using the three-dimensional high-resolution (1∘ × 1∘) chemical transport model MIMOSA-CHIM. Three Arctic winters 1999–2000, 2001–2002, 2002–2003 and three Antarctic winters 2001, 2002, and 2003 were considered for the study. The cumulative ozone loss in the Arctic winter 2002–2003 reached around 35% at 475 K inside the vortex, as compared to more than 60% in 1999–2000. During 1999–2000, denitrification induces a maximum of about 23% extra ozone loss at 475 K as compared to 17% in 2002–2003. Unlike these two colder Arctic winters, the 2001–2002 Arctic was warmer and did not experience much ozone loss. Sensitivity tests showed that the chosen resolution of 1∘ × 1∘ provides a better evaluation of ozone loss at the edge of the polar vortex in high solar zenith angle conditions. The simulation results for ozone, ClO, HNO3, N2O, and NO y for winters 1999–2000 and 2002–2003 were compared with measurements on board ER-2 and Geophysica aircraft respectively. Sensitivity tests showed that increasing heating rates calculated by the model by 50% and doubling the PSC (Polar Stratospheric Clouds) particle density (from 5 × 10−3 to 10−2 cm−3) refines the agreement with in situ ozone, N2O and NO y levels. In this configuration, simulated ClO levels are increased and are in better agreement with observations in January but are overestimated by about 20% in March. The use of the Burkholder et al. (1990) Cl2O2 absorption cross-sections slightly increases further ClO levels especially in high solar zenith angle conditions. Comparisons of the modelled ozone values with ozonesonde measurement in the Antarctic winter 2003 and with Polar Ozone and Aerosol Measurement III (POAM III) measurements in the Antarctic winters 2001 and 2002, shows that the simulations underestimate the ozone loss rate at the end of the ozone destruction period. A slightly better agreement is obtained with the use of Burkholder et al. (1990) Cl2O2 absorption cross-sections. Article in Journal/Newspaper Antarc* Antarctic Arctic Institut national des sciences de l'Univers: HAL-INSU Arctic Antarctic The Antarctic Journal of Atmospheric Chemistry 55 3 205 226 |