Surface longwave cloud radiative effect derived from space lidar observations : application in the Arctic

Clouds play an important role in regulating Earth’s energy budget at the surface. For example, clouds absorb thermal radiation emitted by Earth’s surface and reemit it toward the surface and warming the surface. This can be quantified through surface LongWave (LW) Cloud Radiative Effect (CRE). Howev...

Full description

Bibliographic Details
Main Author: Arouf, Assia
Other Authors: Laboratoire de Météorologie Dynamique (UMR 8539) (LMD), Institut national des sciences de l'Univers (INSU - CNRS)-École polytechnique (X)-École des Ponts ParisTech (ENPC)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Département des Géosciences - ENS Paris, École normale supérieure - Paris (ENS-PSL), Université Paris Sciences et Lettres (PSL)-Université Paris Sciences et Lettres (PSL)-École normale supérieure - Paris (ENS-PSL), Université Paris Sciences et Lettres (PSL)-Université Paris Sciences et Lettres (PSL), Sorbonne Université, Hélène Chepfer
Format: Doctoral or Postdoctoral Thesis
Language:English
Published: HAL CCSD 2023
Subjects:
Online Access:https://theses.hal.science/tel-04193782
https://theses.hal.science/tel-04193782/document
https://theses.hal.science/tel-04193782/file/AROUF_Assia_these_2023.pdf
id ftinspolytechpar:oai:HAL:tel-04193782v1
record_format openpolar
spelling ftinspolytechpar:oai:HAL:tel-04193782v1 2024-06-23T07:50:26+00:00 Surface longwave cloud radiative effect derived from space lidar observations : application in the Arctic Effet radiatif des nuages à la surface dans le domaine des grandes longueurs d'onde à partir des observations lidar spatial Arouf, Assia Laboratoire de Météorologie Dynamique (UMR 8539) (LMD) Institut national des sciences de l'Univers (INSU - CNRS)-École polytechnique (X)-École des Ponts ParisTech (ENPC)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Département des Géosciences - ENS Paris École normale supérieure - Paris (ENS-PSL) Université Paris Sciences et Lettres (PSL)-Université Paris Sciences et Lettres (PSL)-École normale supérieure - Paris (ENS-PSL) Université Paris Sciences et Lettres (PSL)-Université Paris Sciences et Lettres (PSL) Sorbonne Université Hélène Chepfer 2023-04-21 https://theses.hal.science/tel-04193782 https://theses.hal.science/tel-04193782/document https://theses.hal.science/tel-04193782/file/AROUF_Assia_these_2023.pdf en eng HAL CCSD NNT: 2023SORUS173 tel-04193782 https://theses.hal.science/tel-04193782 https://theses.hal.science/tel-04193782/document https://theses.hal.science/tel-04193782/file/AROUF_Assia_these_2023.pdf info:eu-repo/semantics/OpenAccess https://theses.hal.science/tel-04193782 Atmospheric and Oceanic Physics [physics.ao-ph]. Sorbonne Université, 2023. English. ⟨NNT : 2023SORUS173⟩ Space-Lidar Surface cloud radiative effect Radiative transfer Longwave Arctic Lidar spatial Effet radiatif des nuages Transfert radiatif Infrarouge Surface de la Terre Arctique [PHYS.PHYS.PHYS-AO-PH]Physics [physics]/Physics [physics]/Atmospheric and Oceanic Physics [physics.ao-ph] info:eu-repo/semantics/doctoralThesis Theses 2023 ftinspolytechpar 2024-05-27T14:03:15Z Clouds play an important role in regulating Earth’s energy budget at the surface. For example, clouds absorb thermal radiation emitted by Earth’s surface and reemit it toward the surface and warming the surface. This can be quantified through surface LongWave (LW) Cloud Radiative Effect (CRE). However, surface LW CRE on a global scale is not well retrieved and its instantaneous and interdecadal variability is poorly known. Indeed, it depends highly on vertical cloud distribution, which is poorly documented globally. In this thesis, we propose to retrieve the surface LW CRE over 13 years (2008 − 2020) at a global scale using Cloud–Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO) spaceborne lidar observations. From 1D radiative transfer computations, we establish linear parametrizations between surface LW CRE and cloud properties including cloud altitude. Combining the parametrizations with the cloud observations, we derive two datasets of surface LW CRE, at monthly–2° × 2° gridded scale and instantaneously at full CALIPSO horizontal resolution (90 m cross-track; 330 m along orbit-track). We found that clouds warm the surface by 27.0 W/m2 over the 2008 − 2020 time period at a global scale. Surface LW CRE is particularly important in polar regions such that clouds may have an effect on ice melting. By instantaneously co-locating surface cloud warming and sea ice observations in regions where sea ice varies, we showed that large surface cloud warming values (> 80 W/m2 ) are much more frequent over open water than over sea ice during late Fall. Our results suggest that clouds may delay sea ice freeze-up later into the Fall. Les nuages jouent un rôle important dans la régulation du bilan énergétique à la surface de la Terre. Par exemple, ils absorbent le rayonnement tellurique émis par la surface de la Terre et le réémettent vers la surface, réchauffant ainsi cette dernière. Ce réchauffement peut être quantifié au travers de l’effet radiatif des nuages (Cloud Radiative Effect (CRE)) ... Doctoral or Postdoctoral Thesis Arctic Arctique* Sea ice HAL de l'Institut Polytechnique de Paris Arctic
institution Open Polar
collection HAL de l'Institut Polytechnique de Paris
op_collection_id ftinspolytechpar
language English
topic Space-Lidar
Surface cloud radiative effect
Radiative transfer
Longwave
Arctic
Lidar spatial
Effet radiatif des nuages
Transfert radiatif
Infrarouge
Surface de la Terre
Arctique
[PHYS.PHYS.PHYS-AO-PH]Physics [physics]/Physics [physics]/Atmospheric and Oceanic Physics [physics.ao-ph]
spellingShingle Space-Lidar
Surface cloud radiative effect
Radiative transfer
Longwave
Arctic
Lidar spatial
Effet radiatif des nuages
Transfert radiatif
Infrarouge
Surface de la Terre
Arctique
[PHYS.PHYS.PHYS-AO-PH]Physics [physics]/Physics [physics]/Atmospheric and Oceanic Physics [physics.ao-ph]
Arouf, Assia
Surface longwave cloud radiative effect derived from space lidar observations : application in the Arctic
topic_facet Space-Lidar
Surface cloud radiative effect
Radiative transfer
Longwave
Arctic
Lidar spatial
Effet radiatif des nuages
Transfert radiatif
Infrarouge
Surface de la Terre
Arctique
[PHYS.PHYS.PHYS-AO-PH]Physics [physics]/Physics [physics]/Atmospheric and Oceanic Physics [physics.ao-ph]
description Clouds play an important role in regulating Earth’s energy budget at the surface. For example, clouds absorb thermal radiation emitted by Earth’s surface and reemit it toward the surface and warming the surface. This can be quantified through surface LongWave (LW) Cloud Radiative Effect (CRE). However, surface LW CRE on a global scale is not well retrieved and its instantaneous and interdecadal variability is poorly known. Indeed, it depends highly on vertical cloud distribution, which is poorly documented globally. In this thesis, we propose to retrieve the surface LW CRE over 13 years (2008 − 2020) at a global scale using Cloud–Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO) spaceborne lidar observations. From 1D radiative transfer computations, we establish linear parametrizations between surface LW CRE and cloud properties including cloud altitude. Combining the parametrizations with the cloud observations, we derive two datasets of surface LW CRE, at monthly–2° × 2° gridded scale and instantaneously at full CALIPSO horizontal resolution (90 m cross-track; 330 m along orbit-track). We found that clouds warm the surface by 27.0 W/m2 over the 2008 − 2020 time period at a global scale. Surface LW CRE is particularly important in polar regions such that clouds may have an effect on ice melting. By instantaneously co-locating surface cloud warming and sea ice observations in regions where sea ice varies, we showed that large surface cloud warming values (> 80 W/m2 ) are much more frequent over open water than over sea ice during late Fall. Our results suggest that clouds may delay sea ice freeze-up later into the Fall. Les nuages jouent un rôle important dans la régulation du bilan énergétique à la surface de la Terre. Par exemple, ils absorbent le rayonnement tellurique émis par la surface de la Terre et le réémettent vers la surface, réchauffant ainsi cette dernière. Ce réchauffement peut être quantifié au travers de l’effet radiatif des nuages (Cloud Radiative Effect (CRE)) ...
author2 Laboratoire de Météorologie Dynamique (UMR 8539) (LMD)
Institut national des sciences de l'Univers (INSU - CNRS)-École polytechnique (X)-École des Ponts ParisTech (ENPC)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Département des Géosciences - ENS Paris
École normale supérieure - Paris (ENS-PSL)
Université Paris Sciences et Lettres (PSL)-Université Paris Sciences et Lettres (PSL)-École normale supérieure - Paris (ENS-PSL)
Université Paris Sciences et Lettres (PSL)-Université Paris Sciences et Lettres (PSL)
Sorbonne Université
Hélène Chepfer
format Doctoral or Postdoctoral Thesis
author Arouf, Assia
author_facet Arouf, Assia
author_sort Arouf, Assia
title Surface longwave cloud radiative effect derived from space lidar observations : application in the Arctic
title_short Surface longwave cloud radiative effect derived from space lidar observations : application in the Arctic
title_full Surface longwave cloud radiative effect derived from space lidar observations : application in the Arctic
title_fullStr Surface longwave cloud radiative effect derived from space lidar observations : application in the Arctic
title_full_unstemmed Surface longwave cloud radiative effect derived from space lidar observations : application in the Arctic
title_sort surface longwave cloud radiative effect derived from space lidar observations : application in the arctic
publisher HAL CCSD
publishDate 2023
url https://theses.hal.science/tel-04193782
https://theses.hal.science/tel-04193782/document
https://theses.hal.science/tel-04193782/file/AROUF_Assia_these_2023.pdf
geographic Arctic
geographic_facet Arctic
genre Arctic
Arctique*
Sea ice
genre_facet Arctic
Arctique*
Sea ice
op_source https://theses.hal.science/tel-04193782
Atmospheric and Oceanic Physics [physics.ao-ph]. Sorbonne Université, 2023. English. ⟨NNT : 2023SORUS173⟩
op_relation NNT: 2023SORUS173
tel-04193782
https://theses.hal.science/tel-04193782
https://theses.hal.science/tel-04193782/document
https://theses.hal.science/tel-04193782/file/AROUF_Assia_these_2023.pdf
op_rights info:eu-repo/semantics/OpenAccess
_version_ 1802641323293933568