A punctuated equilibrium analysis of the climate evolution of cenozoic exhibits a hierarchy of abrupt transitions

International audience The Earth's climate has experienced numerous critical transitions during its history, which have often been accompanied by massive and rapid changes in the biosphere. Such transitions are evidenced in various proxy records covering different timescales. The goal is then t...

Full description

Bibliographic Details
Published in:Scientific Reports
Main Authors: Rousseau, Denis-Didier, Bagniewski, Witold, Lucarini, Valerio
Other Authors: Géosciences Montpellier, Institut national des sciences de l'Univers (INSU - CNRS)-Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS)-Université des Antilles (UA), Laboratoire de Météorologie Dynamique (UMR 8539) (LMD), Institut national des sciences de l'Univers (INSU - CNRS)-École polytechnique (X)-École des Ponts ParisTech (ENPC)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Département des Géosciences - ENS Paris, École normale supérieure - Paris (ENS-PSL), Université Paris Sciences et Lettres (PSL)-Université Paris Sciences et Lettres (PSL)-École normale supérieure - Paris (ENS-PSL), Université Paris Sciences et Lettres (PSL)-Université Paris Sciences et Lettres (PSL)
Format: Article in Journal/Newspaper
Language:English
Published: HAL CCSD 2023
Subjects:
Online Access:https://insu.hal.science/insu-04195490
https://insu.hal.science/insu-04195490/document
https://insu.hal.science/insu-04195490/file/s41598-023-38454-6.pdf
https://doi.org/10.1038/s41598-023-38454-6
Description
Summary:International audience The Earth's climate has experienced numerous critical transitions during its history, which have often been accompanied by massive and rapid changes in the biosphere. Such transitions are evidenced in various proxy records covering different timescales. The goal is then to identify, date, characterize, and rank past critical transitions in terms of importance, thus possibly yielding a more thorough perspective on climatic history. To illustrate such an approach, which is inspired by the punctuated equilibrium perspective on the theory of evolution, we have analyzed 2 key high-resolution datasets: the CENOGRID marine compilation (past 66 Myr), and North Atlantic U1308 record (past 3.3 Myr). By combining recurrence analysis of the individual time series with a multivariate representation of the system based on the theory of the quasi-potential, we identify the key abrupt transitions associated with major regime changes that separate various clusters of climate variability. This allows interpreting the time-evolution of the system as a trajectory taking place in a dynamical landscape, whose multiscale features describe a hierarchy of metastable states and associated tipping points.