Observed and Modeled Mountain Waves from the Surface to the Mesosphere near the Drake Passage

International audience Four state-of-the-science numerical weather prediction (NWP) models were used to perform mountain wave (MW)-resolving hindcasts over the Drake Passage of a 10-day period in 2010 with numerous observed MW cases. The Integrated Forecast System (IFS) and the Icosahedral Nonhydros...

Full description

Bibliographic Details
Published in:Journal of the Atmospheric Sciences
Main Authors: Kruse, Christopher G., Alexander, M. Joan, Hoffmann, Lars, van Niekerk, Annelize, Polichtchouk, Inna, Bacmeister, Julio T., Holt, Laura, Plougonven, Riwal, Šácha, Petr, Wright, Corwin, Sato, Kaoru, Shibuya, Ryosuke, Gisinger, Sonja, Ern, Manfred, Meyer, Catrin I., Stein, Olaf
Other Authors: Laboratoire de Météorologie Dynamique (UMR 8539) (LMD), Institut national des sciences de l'Univers (INSU - CNRS)-École polytechnique (X)-École des Ponts ParisTech (ENPC)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Département des Géosciences - ENS Paris, École normale supérieure - Paris (ENS-PSL), Université Paris Sciences et Lettres (PSL)-Université Paris Sciences et Lettres (PSL)-École normale supérieure - Paris (ENS-PSL), Université Paris Sciences et Lettres (PSL)-Université Paris Sciences et Lettres (PSL)
Format: Article in Journal/Newspaper
Language:English
Published: HAL CCSD 2022
Subjects:
Online Access:https://insu.hal.science/insu-03726907
https://insu.hal.science/insu-03726907/document
https://insu.hal.science/insu-03726907/file/atsc-JAS-D-21-0252.1.pdf
https://doi.org/10.1175/JAS-D-21-0252.1
id ftinspolytechpar:oai:HAL:insu-03726907v1
record_format openpolar
spelling ftinspolytechpar:oai:HAL:insu-03726907v1 2024-06-16T07:39:38+00:00 Observed and Modeled Mountain Waves from the Surface to the Mesosphere near the Drake Passage Kruse, Christopher G. Alexander, M. Joan Hoffmann, Lars van Niekerk, Annelize Polichtchouk, Inna Bacmeister, Julio T. Holt, Laura Plougonven, Riwal Šácha, Petr Wright, Corwin Sato, Kaoru Shibuya, Ryosuke Gisinger, Sonja Ern, Manfred Meyer, Catrin I. Stein, Olaf Laboratoire de Météorologie Dynamique (UMR 8539) (LMD) Institut national des sciences de l'Univers (INSU - CNRS)-École polytechnique (X)-École des Ponts ParisTech (ENPC)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Département des Géosciences - ENS Paris École normale supérieure - Paris (ENS-PSL) Université Paris Sciences et Lettres (PSL)-Université Paris Sciences et Lettres (PSL)-École normale supérieure - Paris (ENS-PSL) Université Paris Sciences et Lettres (PSL)-Université Paris Sciences et Lettres (PSL) 2022 https://insu.hal.science/insu-03726907 https://insu.hal.science/insu-03726907/document https://insu.hal.science/insu-03726907/file/atsc-JAS-D-21-0252.1.pdf https://doi.org/10.1175/JAS-D-21-0252.1 en eng HAL CCSD American Meteorological Society info:eu-repo/semantics/altIdentifier/doi/10.1175/JAS-D-21-0252.1 insu-03726907 https://insu.hal.science/insu-03726907 https://insu.hal.science/insu-03726907/document https://insu.hal.science/insu-03726907/file/atsc-JAS-D-21-0252.1.pdf BIBCODE: 2022JAtS.79.909K doi:10.1175/JAS-D-21-0252.1 info:eu-repo/semantics/OpenAccess ISSN: 0022-4928 EISSN: 1520-0469 Journal of the Atmospheric Sciences https://insu.hal.science/insu-03726907 Journal of the Atmospheric Sciences, 2022, 79, pp.909-932. ⟨10.1175/JAS-D-21-0252.1⟩ [SDU]Sciences of the Universe [physics] info:eu-repo/semantics/article Journal articles 2022 ftinspolytechpar https://doi.org/10.1175/JAS-D-21-0252.1 2024-05-19T23:42:15Z International audience Four state-of-the-science numerical weather prediction (NWP) models were used to perform mountain wave (MW)-resolving hindcasts over the Drake Passage of a 10-day period in 2010 with numerous observed MW cases. The Integrated Forecast System (IFS) and the Icosahedral Nonhydrostatic (ICON) model were run at Δx ≈ 9 and 13 km globally. The Weather Research and Forecasting (WRF) Model and the Met Office Unified Model (UM) were both configured with a Δx = 3-km regional domain. All domains had tops near 1 Pa (z ≈ 80 km). These deep domains allowed quantitative validation against Atmospheric Infrared Sounder (AIRS) observations, accounting for observation time, viewing geometry, and radiative transfer. All models reproduced observed middle-atmosphere MWs with remarkable skill. Increased horizontal resolution improved validations. Still, all models underrepresented observed MW amplitudes, even after accounting for model effective resolution and instrument noise, suggesting even at Δx ≈ 3-km resolution, small-scale MWs are underresolved and/or overdiffused. MW drag parameterizations are still necessary in NWP models at current operational resolutions of Δx ≈ 10 km. Upper GW sponge layers in the operationally configured models significantly, artificially reduced MW amplitudes in the upper stratosphere and mesosphere. In the IFS, parameterized GW drags partly compensated this deficiency, but still, total drags were ≈6 times smaller than that resolved at Δx ≈ 3 km. Meridionally propagating MWs significantly enhance zonal drag over the Drake Passage. Interestingly, drag associated with meridional fluxes of zonal momentum (i.e., u ' υ ' ¯ ) were important; not accounting for these terms results in a drag in the wrong direction at and below the polar night jet. Article in Journal/Newspaper Drake Passage polar night HAL de l'Institut Polytechnique de Paris Drake Passage Journal of the Atmospheric Sciences 79 4 909 932
institution Open Polar
collection HAL de l'Institut Polytechnique de Paris
op_collection_id ftinspolytechpar
language English
topic [SDU]Sciences of the Universe [physics]
spellingShingle [SDU]Sciences of the Universe [physics]
Kruse, Christopher G.
Alexander, M. Joan
Hoffmann, Lars
van Niekerk, Annelize
Polichtchouk, Inna
Bacmeister, Julio T.
Holt, Laura
Plougonven, Riwal
Šácha, Petr
Wright, Corwin
Sato, Kaoru
Shibuya, Ryosuke
Gisinger, Sonja
Ern, Manfred
Meyer, Catrin I.
Stein, Olaf
Observed and Modeled Mountain Waves from the Surface to the Mesosphere near the Drake Passage
topic_facet [SDU]Sciences of the Universe [physics]
description International audience Four state-of-the-science numerical weather prediction (NWP) models were used to perform mountain wave (MW)-resolving hindcasts over the Drake Passage of a 10-day period in 2010 with numerous observed MW cases. The Integrated Forecast System (IFS) and the Icosahedral Nonhydrostatic (ICON) model were run at Δx ≈ 9 and 13 km globally. The Weather Research and Forecasting (WRF) Model and the Met Office Unified Model (UM) were both configured with a Δx = 3-km regional domain. All domains had tops near 1 Pa (z ≈ 80 km). These deep domains allowed quantitative validation against Atmospheric Infrared Sounder (AIRS) observations, accounting for observation time, viewing geometry, and radiative transfer. All models reproduced observed middle-atmosphere MWs with remarkable skill. Increased horizontal resolution improved validations. Still, all models underrepresented observed MW amplitudes, even after accounting for model effective resolution and instrument noise, suggesting even at Δx ≈ 3-km resolution, small-scale MWs are underresolved and/or overdiffused. MW drag parameterizations are still necessary in NWP models at current operational resolutions of Δx ≈ 10 km. Upper GW sponge layers in the operationally configured models significantly, artificially reduced MW amplitudes in the upper stratosphere and mesosphere. In the IFS, parameterized GW drags partly compensated this deficiency, but still, total drags were ≈6 times smaller than that resolved at Δx ≈ 3 km. Meridionally propagating MWs significantly enhance zonal drag over the Drake Passage. Interestingly, drag associated with meridional fluxes of zonal momentum (i.e., u ' υ ' ¯ ) were important; not accounting for these terms results in a drag in the wrong direction at and below the polar night jet.
author2 Laboratoire de Météorologie Dynamique (UMR 8539) (LMD)
Institut national des sciences de l'Univers (INSU - CNRS)-École polytechnique (X)-École des Ponts ParisTech (ENPC)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Département des Géosciences - ENS Paris
École normale supérieure - Paris (ENS-PSL)
Université Paris Sciences et Lettres (PSL)-Université Paris Sciences et Lettres (PSL)-École normale supérieure - Paris (ENS-PSL)
Université Paris Sciences et Lettres (PSL)-Université Paris Sciences et Lettres (PSL)
format Article in Journal/Newspaper
author Kruse, Christopher G.
Alexander, M. Joan
Hoffmann, Lars
van Niekerk, Annelize
Polichtchouk, Inna
Bacmeister, Julio T.
Holt, Laura
Plougonven, Riwal
Šácha, Petr
Wright, Corwin
Sato, Kaoru
Shibuya, Ryosuke
Gisinger, Sonja
Ern, Manfred
Meyer, Catrin I.
Stein, Olaf
author_facet Kruse, Christopher G.
Alexander, M. Joan
Hoffmann, Lars
van Niekerk, Annelize
Polichtchouk, Inna
Bacmeister, Julio T.
Holt, Laura
Plougonven, Riwal
Šácha, Petr
Wright, Corwin
Sato, Kaoru
Shibuya, Ryosuke
Gisinger, Sonja
Ern, Manfred
Meyer, Catrin I.
Stein, Olaf
author_sort Kruse, Christopher G.
title Observed and Modeled Mountain Waves from the Surface to the Mesosphere near the Drake Passage
title_short Observed and Modeled Mountain Waves from the Surface to the Mesosphere near the Drake Passage
title_full Observed and Modeled Mountain Waves from the Surface to the Mesosphere near the Drake Passage
title_fullStr Observed and Modeled Mountain Waves from the Surface to the Mesosphere near the Drake Passage
title_full_unstemmed Observed and Modeled Mountain Waves from the Surface to the Mesosphere near the Drake Passage
title_sort observed and modeled mountain waves from the surface to the mesosphere near the drake passage
publisher HAL CCSD
publishDate 2022
url https://insu.hal.science/insu-03726907
https://insu.hal.science/insu-03726907/document
https://insu.hal.science/insu-03726907/file/atsc-JAS-D-21-0252.1.pdf
https://doi.org/10.1175/JAS-D-21-0252.1
geographic Drake Passage
geographic_facet Drake Passage
genre Drake Passage
polar night
genre_facet Drake Passage
polar night
op_source ISSN: 0022-4928
EISSN: 1520-0469
Journal of the Atmospheric Sciences
https://insu.hal.science/insu-03726907
Journal of the Atmospheric Sciences, 2022, 79, pp.909-932. ⟨10.1175/JAS-D-21-0252.1⟩
op_relation info:eu-repo/semantics/altIdentifier/doi/10.1175/JAS-D-21-0252.1
insu-03726907
https://insu.hal.science/insu-03726907
https://insu.hal.science/insu-03726907/document
https://insu.hal.science/insu-03726907/file/atsc-JAS-D-21-0252.1.pdf
BIBCODE: 2022JAtS.79.909K
doi:10.1175/JAS-D-21-0252.1
op_rights info:eu-repo/semantics/OpenAccess
op_doi https://doi.org/10.1175/JAS-D-21-0252.1
container_title Journal of the Atmospheric Sciences
container_volume 79
container_issue 4
container_start_page 909
op_container_end_page 932
_version_ 1802006398726307840