id ftinspolytechpar:oai:HAL:hal-03843055v1
record_format openpolar
spelling ftinspolytechpar:oai:HAL:hal-03843055v1 2024-06-16T07:41:59+00:00 Storm track response to uniform global warming downstream of an idealized sea surface temperature front Schemm, Sebastian Papritz, Lukas Rivière, Gwendal Laboratoire de Météorologie Dynamique (UMR 8539) (LMD) Institut national des sciences de l'Univers (INSU - CNRS)-École polytechnique (X)-École des Ponts ParisTech (ENPC)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Département des Géosciences - ENS Paris École normale supérieure - Paris (ENS-PSL) Université Paris Sciences et Lettres (PSL)-Université Paris Sciences et Lettres (PSL)-École normale supérieure - Paris (ENS-PSL) Université Paris Sciences et Lettres (PSL)-Université Paris Sciences et Lettres (PSL) 2022-05-19 https://hal.science/hal-03843055 https://hal.science/hal-03843055/document https://hal.science/hal-03843055/file/Schemm_et_al22.pdf https://doi.org/10.5194/wcd-3-601-2022 en eng HAL CCSD Copernicus info:eu-repo/semantics/altIdentifier/doi/10.5194/wcd-3-601-2022 hal-03843055 https://hal.science/hal-03843055 https://hal.science/hal-03843055/document https://hal.science/hal-03843055/file/Schemm_et_al22.pdf doi:10.5194/wcd-3-601-2022 info:eu-repo/semantics/OpenAccess ISSN: 2698-4016 Weather and Climate Dynamics https://hal.science/hal-03843055 Weather and Climate Dynamics, 2022, 3 (2), pp.601 - 623. ⟨10.5194/wcd-3-601-2022⟩ [SDU.OCEAN]Sciences of the Universe [physics]/Ocean Atmosphere info:eu-repo/semantics/article Journal articles 2022 ftinspolytechpar https://doi.org/10.5194/wcd-3-601-2022 2024-05-19T23:42:58Z International audience The future evolution of storm tracks, their intensity, shape, and location, is an important driver of regional precipitation changes, cyclone-associated weather extremes, and regional climate patterns. For the North Atlantic storm track, Coupled Model Intercomparison Project (CMIP) data indicate a tripole pattern of change under the RCP8.5 scenario. In this study, the tripole pattern is qualitatively reproduced by simulating the change of a storm track generated downstream of an idealized sea surface temperature (SST) front under uniform warming on an aquaplanet. The simulated tripole pattern consists of reduced eddy kinetic energy (EKE) upstream and equatorward of the SST front, extended and poleward shifted enhanced EKE downstream of the SST front, and a regionally reduced EKE increase at polar latitudes. In the absence of the idealized SST front, in contrast, the storm track exhibits a poleward shift but no tripole pattern. A detailed analysis of the EKE and eddy available potential energy (EAPE) sources and sinks reveals that the changes are locally driven by changes in baroclinic conversion rather than diabatic processes. However, globally the change in baroclinic conversion averages to zero; thus the observed global EAPE increase results from diabatic generation. In particular, resolved-scale condensation plus parameterized cloud physics dominate the global EAPE increase followed by longwave radiation. Amplified stationary waves affect EKE and EAPE advection, which contributes to the local EKE and EAPE minimum at polar latitudes. Feature-based tracking provides further insight into cyclone life cycle changes downstream of the SST front. Moderately deepening cyclones deepen less in a warmer climate, while strongly deepening cyclones deepen more. Similarly, the average cyclone becomes less intense in a warmer climate, while the extremely intense cyclones become more intense. Both results hold true for cyclones with genesis in the vicinity of the SST front and elsewhere. The mean ... Article in Journal/Newspaper North Atlantic HAL de l'Institut Polytechnique de Paris Weather and Climate Dynamics 3 2 601 623
institution Open Polar
collection HAL de l'Institut Polytechnique de Paris
op_collection_id ftinspolytechpar
language English
topic [SDU.OCEAN]Sciences of the Universe [physics]/Ocean
Atmosphere
spellingShingle [SDU.OCEAN]Sciences of the Universe [physics]/Ocean
Atmosphere
Schemm, Sebastian
Papritz, Lukas
Rivière, Gwendal
Storm track response to uniform global warming downstream of an idealized sea surface temperature front
topic_facet [SDU.OCEAN]Sciences of the Universe [physics]/Ocean
Atmosphere
description International audience The future evolution of storm tracks, their intensity, shape, and location, is an important driver of regional precipitation changes, cyclone-associated weather extremes, and regional climate patterns. For the North Atlantic storm track, Coupled Model Intercomparison Project (CMIP) data indicate a tripole pattern of change under the RCP8.5 scenario. In this study, the tripole pattern is qualitatively reproduced by simulating the change of a storm track generated downstream of an idealized sea surface temperature (SST) front under uniform warming on an aquaplanet. The simulated tripole pattern consists of reduced eddy kinetic energy (EKE) upstream and equatorward of the SST front, extended and poleward shifted enhanced EKE downstream of the SST front, and a regionally reduced EKE increase at polar latitudes. In the absence of the idealized SST front, in contrast, the storm track exhibits a poleward shift but no tripole pattern. A detailed analysis of the EKE and eddy available potential energy (EAPE) sources and sinks reveals that the changes are locally driven by changes in baroclinic conversion rather than diabatic processes. However, globally the change in baroclinic conversion averages to zero; thus the observed global EAPE increase results from diabatic generation. In particular, resolved-scale condensation plus parameterized cloud physics dominate the global EAPE increase followed by longwave radiation. Amplified stationary waves affect EKE and EAPE advection, which contributes to the local EKE and EAPE minimum at polar latitudes. Feature-based tracking provides further insight into cyclone life cycle changes downstream of the SST front. Moderately deepening cyclones deepen less in a warmer climate, while strongly deepening cyclones deepen more. Similarly, the average cyclone becomes less intense in a warmer climate, while the extremely intense cyclones become more intense. Both results hold true for cyclones with genesis in the vicinity of the SST front and elsewhere. The mean ...
author2 Laboratoire de Météorologie Dynamique (UMR 8539) (LMD)
Institut national des sciences de l'Univers (INSU - CNRS)-École polytechnique (X)-École des Ponts ParisTech (ENPC)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Département des Géosciences - ENS Paris
École normale supérieure - Paris (ENS-PSL)
Université Paris Sciences et Lettres (PSL)-Université Paris Sciences et Lettres (PSL)-École normale supérieure - Paris (ENS-PSL)
Université Paris Sciences et Lettres (PSL)-Université Paris Sciences et Lettres (PSL)
format Article in Journal/Newspaper
author Schemm, Sebastian
Papritz, Lukas
Rivière, Gwendal
author_facet Schemm, Sebastian
Papritz, Lukas
Rivière, Gwendal
author_sort Schemm, Sebastian
title Storm track response to uniform global warming downstream of an idealized sea surface temperature front
title_short Storm track response to uniform global warming downstream of an idealized sea surface temperature front
title_full Storm track response to uniform global warming downstream of an idealized sea surface temperature front
title_fullStr Storm track response to uniform global warming downstream of an idealized sea surface temperature front
title_full_unstemmed Storm track response to uniform global warming downstream of an idealized sea surface temperature front
title_sort storm track response to uniform global warming downstream of an idealized sea surface temperature front
publisher HAL CCSD
publishDate 2022
url https://hal.science/hal-03843055
https://hal.science/hal-03843055/document
https://hal.science/hal-03843055/file/Schemm_et_al22.pdf
https://doi.org/10.5194/wcd-3-601-2022
genre North Atlantic
genre_facet North Atlantic
op_source ISSN: 2698-4016
Weather and Climate Dynamics
https://hal.science/hal-03843055
Weather and Climate Dynamics, 2022, 3 (2), pp.601 - 623. ⟨10.5194/wcd-3-601-2022⟩
op_relation info:eu-repo/semantics/altIdentifier/doi/10.5194/wcd-3-601-2022
hal-03843055
https://hal.science/hal-03843055
https://hal.science/hal-03843055/document
https://hal.science/hal-03843055/file/Schemm_et_al22.pdf
doi:10.5194/wcd-3-601-2022
op_rights info:eu-repo/semantics/OpenAccess
op_doi https://doi.org/10.5194/wcd-3-601-2022
container_title Weather and Climate Dynamics
container_volume 3
container_issue 2
container_start_page 601
op_container_end_page 623
_version_ 1802009340275589120