Field observations and physical‐biogeochemical modelling suggest low silicon affinity for Antarctic fast ice diatoms

International audience We use field observations from late spring and a one‐dimensional sea‐ice model to explore a high nutrient, high chlorophyll system in Antarctic land‐fast ice. Lack of variability in chlorophyll a concentration and organic carbon content over the 17‐day sampling period suggests...

Full description

Bibliographic Details
Published in:Journal of Geophysical Research: Oceans
Main Authors: Lim, S. M., Moreau, Sébastien, Vancoppenolle, Martin, Deman, Florian, Roukaerts, A., Meiners, Klaus M., Janssens, Jan, Lannuzel, Delphine
Other Authors: The Scripps Research Institute La Jolla, San Diego, Institute for Marine and Antarctic Studies Hobart (IMAS), University of Tasmania Hobart, Australia (UTAS), Nucleus for European Modeling of the Ocean (NEMO R&D ), Laboratoire d'Océanographie et du Climat : Expérimentations et Approches Numériques (LOCEAN), Muséum national d'Histoire naturelle (MNHN)-Institut de Recherche pour le Développement (IRD)-Institut national des sciences de l'Univers (INSU - CNRS)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Institut Pierre-Simon-Laplace (IPSL (FR_636)), École normale supérieure - Paris (ENS-PSL), Université Paris Sciences et Lettres (PSL)-Université Paris Sciences et Lettres (PSL)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut national des sciences de l'Univers (INSU - CNRS)-École polytechnique (X)-Centre National d'Études Spatiales Toulouse (CNES)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Université Paris Cité (UPCité)-École normale supérieure - Paris (ENS-PSL), Université Paris Sciences et Lettres (PSL)-Université Paris Sciences et Lettres (PSL)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-École polytechnique (X)-Centre National d'Études Spatiales Toulouse (CNES)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Université Paris Cité (UPCité)-Muséum national d'Histoire naturelle (MNHN)-Institut de Recherche pour le Développement (IRD)-Institut national des sciences de l'Univers (INSU - CNRS)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Institut Pierre-Simon-Laplace (IPSL (FR_636)), Université Paris Sciences et Lettres (PSL)-Université Paris Sciences et Lettres (PSL)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-École polytechnique (X)-Centre National d'Études Spatiales Toulouse (CNES)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Université Paris Cité (UPCité), Analytical, Environmental and Geo- Chemistry, Vrije Universiteit Brussel Bruxelles (VUB), Antarctic Climate and Ecosystems Cooperative Research Centre (ACE-CRC), Australian Antarctic Division (AAD), Australian Government, Department of the Environment and Energy
Format: Article in Journal/Newspaper
Language:English
Published: HAL CCSD 2019
Subjects:
Online Access:https://hal.science/hal-02349978
https://hal.science/hal-02349978/document
https://hal.science/hal-02349978/file/JGR%20Oceans%20-%202019%20-%20Lim%20-%20Field%20Observations%20and%20Physical%25u2010Biogeochemical%20Modeling%20Suggest%20Low%20Silicon%20Affinity%20for.pdf
https://doi.org/10.1029/2018JC014458
id ftinspolytechpar:oai:HAL:hal-02349978v1
record_format openpolar
institution Open Polar
collection HAL de l'Institut Polytechnique de Paris
op_collection_id ftinspolytechpar
language English
topic [SDU.OCEAN]Sciences of the Universe [physics]/Ocean
Atmosphere
spellingShingle [SDU.OCEAN]Sciences of the Universe [physics]/Ocean
Atmosphere
Lim, S. M.
Moreau, Sébastien
Vancoppenolle, Martin
Deman, Florian
Roukaerts, A.
Meiners, Klaus M.
Janssens, Jan
Lannuzel, Delphine
Field observations and physical‐biogeochemical modelling suggest low silicon affinity for Antarctic fast ice diatoms
topic_facet [SDU.OCEAN]Sciences of the Universe [physics]/Ocean
Atmosphere
description International audience We use field observations from late spring and a one‐dimensional sea‐ice model to explore a high nutrient, high chlorophyll system in Antarctic land‐fast ice. Lack of variability in chlorophyll a concentration and organic carbon content over the 17‐day sampling period suggests a balance between macronutrient sources and biological uptake. Nitrate, nitrite, phosphate, and ammonium were measured at concentrations well above salinity‐predicted levels, indicating nutrient accumulation fueled by remineralization processes. However, silicic acid (DSi) was depleted relative to seawater and was potentially limiting. One‐dimensional physical‐biogeochemical sea‐ice model simulations at the observation site achieve extremely high algal growth and DSi uptake with a DSi half‐saturation constant used for pelagic diatoms (K Si = 3.9 μM) and are not sufficiently improved by tuning the DSi:carbon ratio or DSi remineralization rate. In contrast, diatom biomass in the bottom ice, which makes up 70% of the observed chlorophyll, is simulated using K Si an order of magnitude higher (50 μM), a value similar to that measured in a few Antarctic diatom cultures. Some sea‐ice diatoms may therefore experience limitation at relatively high ambient DSi concentrations compared to pelagic diatoms. Our study highlights the urgent need for observational data on sea‐ice algal affinity for DSi to further support this hypothesis. A lower algal growth rate increases model predictions of DSi in the upper sea ice to more accurate concentrations. The model currently does not account for the non‐diatom communities that dominate those layers, and thus, modeling diatom communities overpredicts DSi uptake in the upper ice.
author2 The Scripps Research Institute La Jolla, San Diego
Institute for Marine and Antarctic Studies Hobart (IMAS)
University of Tasmania Hobart, Australia (UTAS)
Nucleus for European Modeling of the Ocean (NEMO R&D )
Laboratoire d'Océanographie et du Climat : Expérimentations et Approches Numériques (LOCEAN)
Muséum national d'Histoire naturelle (MNHN)-Institut de Recherche pour le Développement (IRD)-Institut national des sciences de l'Univers (INSU - CNRS)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Institut Pierre-Simon-Laplace (IPSL (FR_636))
École normale supérieure - Paris (ENS-PSL)
Université Paris Sciences et Lettres (PSL)-Université Paris Sciences et Lettres (PSL)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut national des sciences de l'Univers (INSU - CNRS)-École polytechnique (X)-Centre National d'Études Spatiales Toulouse (CNES)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Université Paris Cité (UPCité)-École normale supérieure - Paris (ENS-PSL)
Université Paris Sciences et Lettres (PSL)-Université Paris Sciences et Lettres (PSL)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-École polytechnique (X)-Centre National d'Études Spatiales Toulouse (CNES)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Université Paris Cité (UPCité)-Muséum national d'Histoire naturelle (MNHN)-Institut de Recherche pour le Développement (IRD)-Institut national des sciences de l'Univers (INSU - CNRS)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Institut Pierre-Simon-Laplace (IPSL (FR_636))
Université Paris Sciences et Lettres (PSL)-Université Paris Sciences et Lettres (PSL)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-École polytechnique (X)-Centre National d'Études Spatiales Toulouse (CNES)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Université Paris Cité (UPCité)
Analytical, Environmental and Geo- Chemistry
Vrije Universiteit Brussel Bruxelles (VUB)
Antarctic Climate and Ecosystems Cooperative Research Centre (ACE-CRC)
Australian Antarctic Division (AAD)
Australian Government, Department of the Environment and Energy
format Article in Journal/Newspaper
author Lim, S. M.
Moreau, Sébastien
Vancoppenolle, Martin
Deman, Florian
Roukaerts, A.
Meiners, Klaus M.
Janssens, Jan
Lannuzel, Delphine
author_facet Lim, S. M.
Moreau, Sébastien
Vancoppenolle, Martin
Deman, Florian
Roukaerts, A.
Meiners, Klaus M.
Janssens, Jan
Lannuzel, Delphine
author_sort Lim, S. M.
title Field observations and physical‐biogeochemical modelling suggest low silicon affinity for Antarctic fast ice diatoms
title_short Field observations and physical‐biogeochemical modelling suggest low silicon affinity for Antarctic fast ice diatoms
title_full Field observations and physical‐biogeochemical modelling suggest low silicon affinity for Antarctic fast ice diatoms
title_fullStr Field observations and physical‐biogeochemical modelling suggest low silicon affinity for Antarctic fast ice diatoms
title_full_unstemmed Field observations and physical‐biogeochemical modelling suggest low silicon affinity for Antarctic fast ice diatoms
title_sort field observations and physical‐biogeochemical modelling suggest low silicon affinity for antarctic fast ice diatoms
publisher HAL CCSD
publishDate 2019
url https://hal.science/hal-02349978
https://hal.science/hal-02349978/document
https://hal.science/hal-02349978/file/JGR%20Oceans%20-%202019%20-%20Lim%20-%20Field%20Observations%20and%20Physical%25u2010Biogeochemical%20Modeling%20Suggest%20Low%20Silicon%20Affinity%20for.pdf
https://doi.org/10.1029/2018JC014458
geographic Antarctic
geographic_facet Antarctic
genre Antarc*
Antarctic
Sea ice
genre_facet Antarc*
Antarctic
Sea ice
op_source ISSN: 2169-9275
EISSN: 2169-9291
Journal of Geophysical Research. Oceans
https://hal.science/hal-02349978
Journal of Geophysical Research. Oceans, 2019, 124 (11), pp.7837-7853. ⟨10.1029/2018JC014458⟩
op_relation info:eu-repo/semantics/altIdentifier/doi/10.1029/2018JC014458
hal-02349978
https://hal.science/hal-02349978
https://hal.science/hal-02349978/document
https://hal.science/hal-02349978/file/JGR%20Oceans%20-%202019%20-%20Lim%20-%20Field%20Observations%20and%20Physical%25u2010Biogeochemical%20Modeling%20Suggest%20Low%20Silicon%20Affinity%20for.pdf
doi:10.1029/2018JC014458
WOS: 000505404600033
op_rights http://hal.archives-ouvertes.fr/licences/copyright/
info:eu-repo/semantics/OpenAccess
op_doi https://doi.org/10.1029/2018JC014458
container_title Journal of Geophysical Research: Oceans
container_volume 124
container_issue 11
container_start_page 7837
op_container_end_page 7853
_version_ 1802011930799374336
spelling ftinspolytechpar:oai:HAL:hal-02349978v1 2024-06-16T07:35:07+00:00 Field observations and physical‐biogeochemical modelling suggest low silicon affinity for Antarctic fast ice diatoms Lim, S. M. Moreau, Sébastien Vancoppenolle, Martin Deman, Florian Roukaerts, A. Meiners, Klaus M. Janssens, Jan Lannuzel, Delphine The Scripps Research Institute La Jolla, San Diego Institute for Marine and Antarctic Studies Hobart (IMAS) University of Tasmania Hobart, Australia (UTAS) Nucleus for European Modeling of the Ocean (NEMO R&D ) Laboratoire d'Océanographie et du Climat : Expérimentations et Approches Numériques (LOCEAN) Muséum national d'Histoire naturelle (MNHN)-Institut de Recherche pour le Développement (IRD)-Institut national des sciences de l'Univers (INSU - CNRS)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Institut Pierre-Simon-Laplace (IPSL (FR_636)) École normale supérieure - Paris (ENS-PSL) Université Paris Sciences et Lettres (PSL)-Université Paris Sciences et Lettres (PSL)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut national des sciences de l'Univers (INSU - CNRS)-École polytechnique (X)-Centre National d'Études Spatiales Toulouse (CNES)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Université Paris Cité (UPCité)-École normale supérieure - Paris (ENS-PSL) Université Paris Sciences et Lettres (PSL)-Université Paris Sciences et Lettres (PSL)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-École polytechnique (X)-Centre National d'Études Spatiales Toulouse (CNES)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Université Paris Cité (UPCité)-Muséum national d'Histoire naturelle (MNHN)-Institut de Recherche pour le Développement (IRD)-Institut national des sciences de l'Univers (INSU - CNRS)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Institut Pierre-Simon-Laplace (IPSL (FR_636)) Université Paris Sciences et Lettres (PSL)-Université Paris Sciences et Lettres (PSL)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-École polytechnique (X)-Centre National d'Études Spatiales Toulouse (CNES)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Université Paris Cité (UPCité) Analytical, Environmental and Geo- Chemistry Vrije Universiteit Brussel Bruxelles (VUB) Antarctic Climate and Ecosystems Cooperative Research Centre (ACE-CRC) Australian Antarctic Division (AAD) Australian Government, Department of the Environment and Energy 2019-11 https://hal.science/hal-02349978 https://hal.science/hal-02349978/document https://hal.science/hal-02349978/file/JGR%20Oceans%20-%202019%20-%20Lim%20-%20Field%20Observations%20and%20Physical%25u2010Biogeochemical%20Modeling%20Suggest%20Low%20Silicon%20Affinity%20for.pdf https://doi.org/10.1029/2018JC014458 en eng HAL CCSD Wiley-Blackwell info:eu-repo/semantics/altIdentifier/doi/10.1029/2018JC014458 hal-02349978 https://hal.science/hal-02349978 https://hal.science/hal-02349978/document https://hal.science/hal-02349978/file/JGR%20Oceans%20-%202019%20-%20Lim%20-%20Field%20Observations%20and%20Physical%25u2010Biogeochemical%20Modeling%20Suggest%20Low%20Silicon%20Affinity%20for.pdf doi:10.1029/2018JC014458 WOS: 000505404600033 http://hal.archives-ouvertes.fr/licences/copyright/ info:eu-repo/semantics/OpenAccess ISSN: 2169-9275 EISSN: 2169-9291 Journal of Geophysical Research. Oceans https://hal.science/hal-02349978 Journal of Geophysical Research. Oceans, 2019, 124 (11), pp.7837-7853. ⟨10.1029/2018JC014458⟩ [SDU.OCEAN]Sciences of the Universe [physics]/Ocean Atmosphere info:eu-repo/semantics/article Journal articles 2019 ftinspolytechpar https://doi.org/10.1029/2018JC014458 2024-05-19T23:43:45Z International audience We use field observations from late spring and a one‐dimensional sea‐ice model to explore a high nutrient, high chlorophyll system in Antarctic land‐fast ice. Lack of variability in chlorophyll a concentration and organic carbon content over the 17‐day sampling period suggests a balance between macronutrient sources and biological uptake. Nitrate, nitrite, phosphate, and ammonium were measured at concentrations well above salinity‐predicted levels, indicating nutrient accumulation fueled by remineralization processes. However, silicic acid (DSi) was depleted relative to seawater and was potentially limiting. One‐dimensional physical‐biogeochemical sea‐ice model simulations at the observation site achieve extremely high algal growth and DSi uptake with a DSi half‐saturation constant used for pelagic diatoms (K Si = 3.9 μM) and are not sufficiently improved by tuning the DSi:carbon ratio or DSi remineralization rate. In contrast, diatom biomass in the bottom ice, which makes up 70% of the observed chlorophyll, is simulated using K Si an order of magnitude higher (50 μM), a value similar to that measured in a few Antarctic diatom cultures. Some sea‐ice diatoms may therefore experience limitation at relatively high ambient DSi concentrations compared to pelagic diatoms. Our study highlights the urgent need for observational data on sea‐ice algal affinity for DSi to further support this hypothesis. A lower algal growth rate increases model predictions of DSi in the upper sea ice to more accurate concentrations. The model currently does not account for the non‐diatom communities that dominate those layers, and thus, modeling diatom communities overpredicts DSi uptake in the upper ice. Article in Journal/Newspaper Antarc* Antarctic Sea ice HAL de l'Institut Polytechnique de Paris Antarctic Journal of Geophysical Research: Oceans 124 11 7837 7853