Predicting the response of the oceanic carbon cycle to climate change : eco-evolutionary modeling of the microbial loop and the role of viruses

Human activities are affecting ocean health dramatically. Climate change caused by anthropogenic greenhouse gas emission results in sea-surface warming, polar ice caps melting, ocean acidification, and changes in circulation and mixing regimes leading to stratification. All life forms in the ocean a...

Full description

Bibliographic Details
Main Author: Cherabier, Philippe
Other Authors: Institut de biologie de l'ENS Paris (IBENS), Département de Biologie - ENS Paris, École normale supérieure - Paris (ENS-PSL), Université Paris Sciences et Lettres (PSL)-Université Paris Sciences et Lettres (PSL)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS)-École normale supérieure - Paris (ENS-PSL), Université Paris Sciences et Lettres (PSL)-Université Paris Sciences et Lettres (PSL)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS), Sorbonne Université, Régis Ferrière
Format: Doctoral or Postdoctoral Thesis
Language:English
Published: HAL CCSD 2022
Subjects:
Online Access:https://theses.hal.science/tel-03828259
https://theses.hal.science/tel-03828259/document
https://theses.hal.science/tel-03828259/file/CHERABIER_Philippe_2022_v2.pdf
id ftinserm:oai:HAL:tel-03828259v1
record_format openpolar
institution Open Polar
collection Inserm: HAL (Institut national de la santé et de la recherche médicale)
op_collection_id ftinserm
language English
topic Microbial loop
Eco-evolutionnary processes
Natural selection
Adaptive dynamics
Oceans
Climate change
Boucle microbienne
Processus éco-évolutifs
Sélection naturelle
Dynamique adaptative
Océans
Changement climatique
[SDV.EE]Life Sciences [q-bio]/Ecology
environment
[SDE.MCG]Environmental Sciences/Global Changes
[SDV.EE.IEO]Life Sciences [q-bio]/Ecology
environment/Symbiosis
spellingShingle Microbial loop
Eco-evolutionnary processes
Natural selection
Adaptive dynamics
Oceans
Climate change
Boucle microbienne
Processus éco-évolutifs
Sélection naturelle
Dynamique adaptative
Océans
Changement climatique
[SDV.EE]Life Sciences [q-bio]/Ecology
environment
[SDE.MCG]Environmental Sciences/Global Changes
[SDV.EE.IEO]Life Sciences [q-bio]/Ecology
environment/Symbiosis
Cherabier, Philippe
Predicting the response of the oceanic carbon cycle to climate change : eco-evolutionary modeling of the microbial loop and the role of viruses
topic_facet Microbial loop
Eco-evolutionnary processes
Natural selection
Adaptive dynamics
Oceans
Climate change
Boucle microbienne
Processus éco-évolutifs
Sélection naturelle
Dynamique adaptative
Océans
Changement climatique
[SDV.EE]Life Sciences [q-bio]/Ecology
environment
[SDE.MCG]Environmental Sciences/Global Changes
[SDV.EE.IEO]Life Sciences [q-bio]/Ecology
environment/Symbiosis
description Human activities are affecting ocean health dramatically. Climate change caused by anthropogenic greenhouse gas emission results in sea-surface warming, polar ice caps melting, ocean acidification, and changes in circulation and mixing regimes leading to stratification. All life forms in the ocean are impacted, primarily microorganisms which dominate ocean biodiversity and play a major role in global ecosystem function. Microbial communities have a capacity for rapid adaptation because of their large population sizes and short generation times, potentially altering the global cycles of carbon and nutrients in response to climate change, but these feedbacks are largely unresolved. In this thesis, we focus on heterotrophic bacteria and their ability to remineralize dissolved organic matter into inorganic nutrients. This `microbial loop' fuels a carbon recycling pathway, but its response to climate change is still poorly understood. Through eco-evolutionary modeling, we resolve the potential feedback loop resulting from bacterial adaptation in different oceanic regions, both at the surface and deep in the water column. We find that bacterial adaptation tends to mitigate the negative effect climate change has on dissolved organic matter regeneration, with varying degrees depending on the biogeographical region. In order to generate predictions of our model at the global scale, we develop a novel framework for integrating eco-evolutionary processes with Earth system models. We find that bacterial adaptation in the microbial loop adds uncertainty to global ocean ecosystem forecasts, and call for further eco-evolutionary studies at this scale. Finally, we extend our eco-evolutionary modeling framework to address the effect of bacteriophages – arguably a major demographic factor of bacterial populations. We present preliminary analyses of bacteriophages’ influence on the carbon cycle and how they may alter the speed and dynamics of bacterial adaptation to changing environments. Overall, this thesis emphasizes two ...
author2 Institut de biologie de l'ENS Paris (IBENS)
Département de Biologie - ENS Paris
École normale supérieure - Paris (ENS-PSL)
Université Paris Sciences et Lettres (PSL)-Université Paris Sciences et Lettres (PSL)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS)-École normale supérieure - Paris (ENS-PSL)
Université Paris Sciences et Lettres (PSL)-Université Paris Sciences et Lettres (PSL)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS)
Sorbonne Université
Régis Ferrière
format Doctoral or Postdoctoral Thesis
author Cherabier, Philippe
author_facet Cherabier, Philippe
author_sort Cherabier, Philippe
title Predicting the response of the oceanic carbon cycle to climate change : eco-evolutionary modeling of the microbial loop and the role of viruses
title_short Predicting the response of the oceanic carbon cycle to climate change : eco-evolutionary modeling of the microbial loop and the role of viruses
title_full Predicting the response of the oceanic carbon cycle to climate change : eco-evolutionary modeling of the microbial loop and the role of viruses
title_fullStr Predicting the response of the oceanic carbon cycle to climate change : eco-evolutionary modeling of the microbial loop and the role of viruses
title_full_unstemmed Predicting the response of the oceanic carbon cycle to climate change : eco-evolutionary modeling of the microbial loop and the role of viruses
title_sort predicting the response of the oceanic carbon cycle to climate change : eco-evolutionary modeling of the microbial loop and the role of viruses
publisher HAL CCSD
publishDate 2022
url https://theses.hal.science/tel-03828259
https://theses.hal.science/tel-03828259/document
https://theses.hal.science/tel-03828259/file/CHERABIER_Philippe_2022_v2.pdf
genre Ocean acidification
genre_facet Ocean acidification
op_source https://theses.hal.science/tel-03828259
Ecology, environment. Sorbonne Université, 2022. English. ⟨NNT : 2022SORUS184⟩
op_relation NNT: 2022SORUS184
tel-03828259
https://theses.hal.science/tel-03828259
https://theses.hal.science/tel-03828259/document
https://theses.hal.science/tel-03828259/file/CHERABIER_Philippe_2022_v2.pdf
op_rights info:eu-repo/semantics/OpenAccess
_version_ 1802648727285923840
spelling ftinserm:oai:HAL:tel-03828259v1 2024-06-23T07:55:55+00:00 Predicting the response of the oceanic carbon cycle to climate change : eco-evolutionary modeling of the microbial loop and the role of viruses Prédiction de la réaction du cycle du carbone océanique au changement climatique : modélisation éco-évolutive de la boucle microbienne et rôle des virus Cherabier, Philippe Institut de biologie de l'ENS Paris (IBENS) Département de Biologie - ENS Paris École normale supérieure - Paris (ENS-PSL) Université Paris Sciences et Lettres (PSL)-Université Paris Sciences et Lettres (PSL)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS)-École normale supérieure - Paris (ENS-PSL) Université Paris Sciences et Lettres (PSL)-Université Paris Sciences et Lettres (PSL)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS) Sorbonne Université Régis Ferrière 2022-06-24 https://theses.hal.science/tel-03828259 https://theses.hal.science/tel-03828259/document https://theses.hal.science/tel-03828259/file/CHERABIER_Philippe_2022_v2.pdf en eng HAL CCSD NNT: 2022SORUS184 tel-03828259 https://theses.hal.science/tel-03828259 https://theses.hal.science/tel-03828259/document https://theses.hal.science/tel-03828259/file/CHERABIER_Philippe_2022_v2.pdf info:eu-repo/semantics/OpenAccess https://theses.hal.science/tel-03828259 Ecology, environment. Sorbonne Université, 2022. English. ⟨NNT : 2022SORUS184⟩ Microbial loop Eco-evolutionnary processes Natural selection Adaptive dynamics Oceans Climate change Boucle microbienne Processus éco-évolutifs Sélection naturelle Dynamique adaptative Océans Changement climatique [SDV.EE]Life Sciences [q-bio]/Ecology environment [SDE.MCG]Environmental Sciences/Global Changes [SDV.EE.IEO]Life Sciences [q-bio]/Ecology environment/Symbiosis info:eu-repo/semantics/doctoralThesis Theses 2022 ftinserm 2024-06-10T23:58:34Z Human activities are affecting ocean health dramatically. Climate change caused by anthropogenic greenhouse gas emission results in sea-surface warming, polar ice caps melting, ocean acidification, and changes in circulation and mixing regimes leading to stratification. All life forms in the ocean are impacted, primarily microorganisms which dominate ocean biodiversity and play a major role in global ecosystem function. Microbial communities have a capacity for rapid adaptation because of their large population sizes and short generation times, potentially altering the global cycles of carbon and nutrients in response to climate change, but these feedbacks are largely unresolved. In this thesis, we focus on heterotrophic bacteria and their ability to remineralize dissolved organic matter into inorganic nutrients. This `microbial loop' fuels a carbon recycling pathway, but its response to climate change is still poorly understood. Through eco-evolutionary modeling, we resolve the potential feedback loop resulting from bacterial adaptation in different oceanic regions, both at the surface and deep in the water column. We find that bacterial adaptation tends to mitigate the negative effect climate change has on dissolved organic matter regeneration, with varying degrees depending on the biogeographical region. In order to generate predictions of our model at the global scale, we develop a novel framework for integrating eco-evolutionary processes with Earth system models. We find that bacterial adaptation in the microbial loop adds uncertainty to global ocean ecosystem forecasts, and call for further eco-evolutionary studies at this scale. Finally, we extend our eco-evolutionary modeling framework to address the effect of bacteriophages – arguably a major demographic factor of bacterial populations. We present preliminary analyses of bacteriophages’ influence on the carbon cycle and how they may alter the speed and dynamics of bacterial adaptation to changing environments. Overall, this thesis emphasizes two ... Doctoral or Postdoctoral Thesis Ocean acidification Inserm: HAL (Institut national de la santé et de la recherche médicale)