Differentiable Machine Learning-Based Modeling for Directly-Modulated Lasers

International audience End-to-end learning has become a popular method for joint transmitter and receiver optimization in optical communication systems. Such approach may require a differentiable channel model, thus hindering the optimization of links based on directly modulated lasers (DMLs). This...

Full description

Bibliographic Details
Published in:IEEE Photonics Technology Letters
Main Authors: Fernandez, Sergio, Hernandez, Jovanovic, Ognjen, Peucheret, Christophe, Ros, Francesco, Da, Zibar, Darko
Other Authors: DTU Electrical Engineering Lyngby, Danmarks Tekniske Universitet = Technical University of Denmark (DTU), Institut des Fonctions Optiques pour les Technologies de l'informatiON (FOTON), Université de Rennes (UR)-Institut National des Sciences Appliquées - Rennes (INSA Rennes), Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-École Nationale Supérieure des Sciences Appliquées et de Technologie (ENSSAT)-Centre National de la Recherche Scientifique (CNRS)
Format: Article in Journal/Newspaper
Language:English
Published: HAL CCSD 2024
Subjects:
DML
Online Access:https://hal.science/hal-04408658
https://hal.science/hal-04408658/document
https://hal.science/hal-04408658/file/Differentiable_Machine_Learning-Based_Modeling_for_Directly-Modulated_Lasers.pdf
https://doi.org/10.1109/lpt.2024.3350993
id ftinsarennhal:oai:HAL:hal-04408658v1
record_format openpolar
spelling ftinsarennhal:oai:HAL:hal-04408658v1 2024-02-11T10:03:23+01:00 Differentiable Machine Learning-Based Modeling for Directly-Modulated Lasers Fernandez, Sergio, Hernandez Jovanovic, Ognjen Peucheret, Christophe Ros, Francesco, Da Zibar, Darko DTU Electrical Engineering Lyngby Danmarks Tekniske Universitet = Technical University of Denmark (DTU) Institut des Fonctions Optiques pour les Technologies de l'informatiON (FOTON) Université de Rennes (UR)-Institut National des Sciences Appliquées - Rennes (INSA Rennes) Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-École Nationale Supérieure des Sciences Appliquées et de Technologie (ENSSAT)-Centre National de la Recherche Scientifique (CNRS) 2024 https://hal.science/hal-04408658 https://hal.science/hal-04408658/document https://hal.science/hal-04408658/file/Differentiable_Machine_Learning-Based_Modeling_for_Directly-Modulated_Lasers.pdf https://doi.org/10.1109/lpt.2024.3350993 en eng HAL CCSD Institute of Electrical and Electronics Engineers info:eu-repo/semantics/altIdentifier/arxiv/2309.15747 info:eu-repo/semantics/altIdentifier/doi/10.1109/lpt.2024.3350993 hal-04408658 https://hal.science/hal-04408658 https://hal.science/hal-04408658/document https://hal.science/hal-04408658/file/Differentiable_Machine_Learning-Based_Modeling_for_Directly-Modulated_Lasers.pdf ARXIV: 2309.15747 doi:10.1109/lpt.2024.3350993 info:eu-repo/semantics/OpenAccess ISSN: 1041-1135 IEEE Photonics Technology Letters https://hal.science/hal-04408658 IEEE Photonics Technology Letters, 2024, 36 (4), pp.266 - 269. ⟨10.1109/lpt.2024.3350993⟩ Optical communication machine learning directly modulated laser transformer [SPI.OPTI]Engineering Sciences [physics]/Optics / Photonic [INFO.INFO-LG]Computer Science [cs]/Machine Learning [cs.LG] [INFO.INFO-MO]Computer Science [cs]/Modeling and Simulation info:eu-repo/semantics/article Journal articles 2024 ftinsarennhal https://doi.org/10.1109/lpt.2024.3350993 2024-01-24T17:16:11Z International audience End-to-end learning has become a popular method for joint transmitter and receiver optimization in optical communication systems. Such approach may require a differentiable channel model, thus hindering the optimization of links based on directly modulated lasers (DMLs). This is due to the DML behavior in the large-signal regime, for which no analytical solution is available. In this paper, this problem is addressed by developing and comparing differentiable machine learningbased surrogate models. The models are quantitatively assessed in terms of root mean square error and training/testing time. Once the models are trained, the surrogates are then tested in a numerical equalization setup, resembling a practical end-to-end scenario. Based on the numerical investigation conducted, the convolutional attention transformer is shown to outperform the other models considered. Article in Journal/Newspaper DML INSA Rennes HAL (Institut National des Sciences Appliquées) IEEE Photonics Technology Letters 36 4 266 269
institution Open Polar
collection INSA Rennes HAL (Institut National des Sciences Appliquées)
op_collection_id ftinsarennhal
language English
topic Optical communication
machine learning
directly modulated laser
transformer
[SPI.OPTI]Engineering Sciences [physics]/Optics / Photonic
[INFO.INFO-LG]Computer Science [cs]/Machine Learning [cs.LG]
[INFO.INFO-MO]Computer Science [cs]/Modeling and Simulation
spellingShingle Optical communication
machine learning
directly modulated laser
transformer
[SPI.OPTI]Engineering Sciences [physics]/Optics / Photonic
[INFO.INFO-LG]Computer Science [cs]/Machine Learning [cs.LG]
[INFO.INFO-MO]Computer Science [cs]/Modeling and Simulation
Fernandez, Sergio, Hernandez
Jovanovic, Ognjen
Peucheret, Christophe
Ros, Francesco, Da
Zibar, Darko
Differentiable Machine Learning-Based Modeling for Directly-Modulated Lasers
topic_facet Optical communication
machine learning
directly modulated laser
transformer
[SPI.OPTI]Engineering Sciences [physics]/Optics / Photonic
[INFO.INFO-LG]Computer Science [cs]/Machine Learning [cs.LG]
[INFO.INFO-MO]Computer Science [cs]/Modeling and Simulation
description International audience End-to-end learning has become a popular method for joint transmitter and receiver optimization in optical communication systems. Such approach may require a differentiable channel model, thus hindering the optimization of links based on directly modulated lasers (DMLs). This is due to the DML behavior in the large-signal regime, for which no analytical solution is available. In this paper, this problem is addressed by developing and comparing differentiable machine learningbased surrogate models. The models are quantitatively assessed in terms of root mean square error and training/testing time. Once the models are trained, the surrogates are then tested in a numerical equalization setup, resembling a practical end-to-end scenario. Based on the numerical investigation conducted, the convolutional attention transformer is shown to outperform the other models considered.
author2 DTU Electrical Engineering Lyngby
Danmarks Tekniske Universitet = Technical University of Denmark (DTU)
Institut des Fonctions Optiques pour les Technologies de l'informatiON (FOTON)
Université de Rennes (UR)-Institut National des Sciences Appliquées - Rennes (INSA Rennes)
Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-École Nationale Supérieure des Sciences Appliquées et de Technologie (ENSSAT)-Centre National de la Recherche Scientifique (CNRS)
format Article in Journal/Newspaper
author Fernandez, Sergio, Hernandez
Jovanovic, Ognjen
Peucheret, Christophe
Ros, Francesco, Da
Zibar, Darko
author_facet Fernandez, Sergio, Hernandez
Jovanovic, Ognjen
Peucheret, Christophe
Ros, Francesco, Da
Zibar, Darko
author_sort Fernandez, Sergio, Hernandez
title Differentiable Machine Learning-Based Modeling for Directly-Modulated Lasers
title_short Differentiable Machine Learning-Based Modeling for Directly-Modulated Lasers
title_full Differentiable Machine Learning-Based Modeling for Directly-Modulated Lasers
title_fullStr Differentiable Machine Learning-Based Modeling for Directly-Modulated Lasers
title_full_unstemmed Differentiable Machine Learning-Based Modeling for Directly-Modulated Lasers
title_sort differentiable machine learning-based modeling for directly-modulated lasers
publisher HAL CCSD
publishDate 2024
url https://hal.science/hal-04408658
https://hal.science/hal-04408658/document
https://hal.science/hal-04408658/file/Differentiable_Machine_Learning-Based_Modeling_for_Directly-Modulated_Lasers.pdf
https://doi.org/10.1109/lpt.2024.3350993
genre DML
genre_facet DML
op_source ISSN: 1041-1135
IEEE Photonics Technology Letters
https://hal.science/hal-04408658
IEEE Photonics Technology Letters, 2024, 36 (4), pp.266 - 269. ⟨10.1109/lpt.2024.3350993⟩
op_relation info:eu-repo/semantics/altIdentifier/arxiv/2309.15747
info:eu-repo/semantics/altIdentifier/doi/10.1109/lpt.2024.3350993
hal-04408658
https://hal.science/hal-04408658
https://hal.science/hal-04408658/document
https://hal.science/hal-04408658/file/Differentiable_Machine_Learning-Based_Modeling_for_Directly-Modulated_Lasers.pdf
ARXIV: 2309.15747
doi:10.1109/lpt.2024.3350993
op_rights info:eu-repo/semantics/OpenAccess
op_doi https://doi.org/10.1109/lpt.2024.3350993
container_title IEEE Photonics Technology Letters
container_volume 36
container_issue 4
container_start_page 266
op_container_end_page 269
_version_ 1790599598595637248