Differentiable Machine Learning-Based Modeling for Directly-Modulated Lasers
International audience End-to-end learning has become a popular method for joint transmitter and receiver optimization in optical communication systems. Such approach may require a differentiable channel model, thus hindering the optimization of links based on directly modulated lasers (DMLs). This...
Published in: | IEEE Photonics Technology Letters |
---|---|
Main Authors: | , , , , |
Other Authors: | , , , , |
Format: | Article in Journal/Newspaper |
Language: | English |
Published: |
HAL CCSD
2024
|
Subjects: | |
Online Access: | https://hal.science/hal-04408658 https://hal.science/hal-04408658/document https://hal.science/hal-04408658/file/Differentiable_Machine_Learning-Based_Modeling_for_Directly-Modulated_Lasers.pdf https://doi.org/10.1109/lpt.2024.3350993 |
id |
ftinsarennhal:oai:HAL:hal-04408658v1 |
---|---|
record_format |
openpolar |
spelling |
ftinsarennhal:oai:HAL:hal-04408658v1 2024-02-11T10:03:23+01:00 Differentiable Machine Learning-Based Modeling for Directly-Modulated Lasers Fernandez, Sergio, Hernandez Jovanovic, Ognjen Peucheret, Christophe Ros, Francesco, Da Zibar, Darko DTU Electrical Engineering Lyngby Danmarks Tekniske Universitet = Technical University of Denmark (DTU) Institut des Fonctions Optiques pour les Technologies de l'informatiON (FOTON) Université de Rennes (UR)-Institut National des Sciences Appliquées - Rennes (INSA Rennes) Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-École Nationale Supérieure des Sciences Appliquées et de Technologie (ENSSAT)-Centre National de la Recherche Scientifique (CNRS) 2024 https://hal.science/hal-04408658 https://hal.science/hal-04408658/document https://hal.science/hal-04408658/file/Differentiable_Machine_Learning-Based_Modeling_for_Directly-Modulated_Lasers.pdf https://doi.org/10.1109/lpt.2024.3350993 en eng HAL CCSD Institute of Electrical and Electronics Engineers info:eu-repo/semantics/altIdentifier/arxiv/2309.15747 info:eu-repo/semantics/altIdentifier/doi/10.1109/lpt.2024.3350993 hal-04408658 https://hal.science/hal-04408658 https://hal.science/hal-04408658/document https://hal.science/hal-04408658/file/Differentiable_Machine_Learning-Based_Modeling_for_Directly-Modulated_Lasers.pdf ARXIV: 2309.15747 doi:10.1109/lpt.2024.3350993 info:eu-repo/semantics/OpenAccess ISSN: 1041-1135 IEEE Photonics Technology Letters https://hal.science/hal-04408658 IEEE Photonics Technology Letters, 2024, 36 (4), pp.266 - 269. ⟨10.1109/lpt.2024.3350993⟩ Optical communication machine learning directly modulated laser transformer [SPI.OPTI]Engineering Sciences [physics]/Optics / Photonic [INFO.INFO-LG]Computer Science [cs]/Machine Learning [cs.LG] [INFO.INFO-MO]Computer Science [cs]/Modeling and Simulation info:eu-repo/semantics/article Journal articles 2024 ftinsarennhal https://doi.org/10.1109/lpt.2024.3350993 2024-01-24T17:16:11Z International audience End-to-end learning has become a popular method for joint transmitter and receiver optimization in optical communication systems. Such approach may require a differentiable channel model, thus hindering the optimization of links based on directly modulated lasers (DMLs). This is due to the DML behavior in the large-signal regime, for which no analytical solution is available. In this paper, this problem is addressed by developing and comparing differentiable machine learningbased surrogate models. The models are quantitatively assessed in terms of root mean square error and training/testing time. Once the models are trained, the surrogates are then tested in a numerical equalization setup, resembling a practical end-to-end scenario. Based on the numerical investigation conducted, the convolutional attention transformer is shown to outperform the other models considered. Article in Journal/Newspaper DML INSA Rennes HAL (Institut National des Sciences Appliquées) IEEE Photonics Technology Letters 36 4 266 269 |
institution |
Open Polar |
collection |
INSA Rennes HAL (Institut National des Sciences Appliquées) |
op_collection_id |
ftinsarennhal |
language |
English |
topic |
Optical communication machine learning directly modulated laser transformer [SPI.OPTI]Engineering Sciences [physics]/Optics / Photonic [INFO.INFO-LG]Computer Science [cs]/Machine Learning [cs.LG] [INFO.INFO-MO]Computer Science [cs]/Modeling and Simulation |
spellingShingle |
Optical communication machine learning directly modulated laser transformer [SPI.OPTI]Engineering Sciences [physics]/Optics / Photonic [INFO.INFO-LG]Computer Science [cs]/Machine Learning [cs.LG] [INFO.INFO-MO]Computer Science [cs]/Modeling and Simulation Fernandez, Sergio, Hernandez Jovanovic, Ognjen Peucheret, Christophe Ros, Francesco, Da Zibar, Darko Differentiable Machine Learning-Based Modeling for Directly-Modulated Lasers |
topic_facet |
Optical communication machine learning directly modulated laser transformer [SPI.OPTI]Engineering Sciences [physics]/Optics / Photonic [INFO.INFO-LG]Computer Science [cs]/Machine Learning [cs.LG] [INFO.INFO-MO]Computer Science [cs]/Modeling and Simulation |
description |
International audience End-to-end learning has become a popular method for joint transmitter and receiver optimization in optical communication systems. Such approach may require a differentiable channel model, thus hindering the optimization of links based on directly modulated lasers (DMLs). This is due to the DML behavior in the large-signal regime, for which no analytical solution is available. In this paper, this problem is addressed by developing and comparing differentiable machine learningbased surrogate models. The models are quantitatively assessed in terms of root mean square error and training/testing time. Once the models are trained, the surrogates are then tested in a numerical equalization setup, resembling a practical end-to-end scenario. Based on the numerical investigation conducted, the convolutional attention transformer is shown to outperform the other models considered. |
author2 |
DTU Electrical Engineering Lyngby Danmarks Tekniske Universitet = Technical University of Denmark (DTU) Institut des Fonctions Optiques pour les Technologies de l'informatiON (FOTON) Université de Rennes (UR)-Institut National des Sciences Appliquées - Rennes (INSA Rennes) Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-École Nationale Supérieure des Sciences Appliquées et de Technologie (ENSSAT)-Centre National de la Recherche Scientifique (CNRS) |
format |
Article in Journal/Newspaper |
author |
Fernandez, Sergio, Hernandez Jovanovic, Ognjen Peucheret, Christophe Ros, Francesco, Da Zibar, Darko |
author_facet |
Fernandez, Sergio, Hernandez Jovanovic, Ognjen Peucheret, Christophe Ros, Francesco, Da Zibar, Darko |
author_sort |
Fernandez, Sergio, Hernandez |
title |
Differentiable Machine Learning-Based Modeling for Directly-Modulated Lasers |
title_short |
Differentiable Machine Learning-Based Modeling for Directly-Modulated Lasers |
title_full |
Differentiable Machine Learning-Based Modeling for Directly-Modulated Lasers |
title_fullStr |
Differentiable Machine Learning-Based Modeling for Directly-Modulated Lasers |
title_full_unstemmed |
Differentiable Machine Learning-Based Modeling for Directly-Modulated Lasers |
title_sort |
differentiable machine learning-based modeling for directly-modulated lasers |
publisher |
HAL CCSD |
publishDate |
2024 |
url |
https://hal.science/hal-04408658 https://hal.science/hal-04408658/document https://hal.science/hal-04408658/file/Differentiable_Machine_Learning-Based_Modeling_for_Directly-Modulated_Lasers.pdf https://doi.org/10.1109/lpt.2024.3350993 |
genre |
DML |
genre_facet |
DML |
op_source |
ISSN: 1041-1135 IEEE Photonics Technology Letters https://hal.science/hal-04408658 IEEE Photonics Technology Letters, 2024, 36 (4), pp.266 - 269. ⟨10.1109/lpt.2024.3350993⟩ |
op_relation |
info:eu-repo/semantics/altIdentifier/arxiv/2309.15747 info:eu-repo/semantics/altIdentifier/doi/10.1109/lpt.2024.3350993 hal-04408658 https://hal.science/hal-04408658 https://hal.science/hal-04408658/document https://hal.science/hal-04408658/file/Differentiable_Machine_Learning-Based_Modeling_for_Directly-Modulated_Lasers.pdf ARXIV: 2309.15747 doi:10.1109/lpt.2024.3350993 |
op_rights |
info:eu-repo/semantics/OpenAccess |
op_doi |
https://doi.org/10.1109/lpt.2024.3350993 |
container_title |
IEEE Photonics Technology Letters |
container_volume |
36 |
container_issue |
4 |
container_start_page |
266 |
op_container_end_page |
269 |
_version_ |
1790599598595637248 |