A direct derivation of the Gent–McWilliams/Redi diffusion tensor from quasi-geostrophic dynamics

The transport induced by ocean mesoscale eddies remains unresolved in most state-of-the-art climate models and needs to be parametrized instead. The natural scale separation between the forcing and the emergent turbulent flow calls for a diffusive parametrization, where the eddy-induced fluxes are r...

Full description

Bibliographic Details
Published in:Journal of Fluid Mechanics
Main Authors: Meunier, Julie, Miquel, Benjamin, Gallet, Basile
Other Authors: Service de physique de l'état condensé (SPEC - UMR3680), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS), Laboratoire de Mecanique des Fluides et d'Acoustique (LMFA), École Centrale de Lyon (ECL), Université de Lyon-Université de Lyon-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Institut National des Sciences Appliquées de Lyon (INSA Lyon), Université de Lyon-Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Centre National de la Recherche Scientifique (CNRS), European Project: 757239,FLAVE
Format: Article in Journal/Newspaper
Language:English
Published: HAL CCSD 2023
Subjects:
Online Access:https://hal.science/hal-04301204
https://hal.science/hal-04301204/document
https://hal.science/hal-04301204/file/2304.09481.pdf
https://doi.org/10.1017/jfm.2023.347
id ftinsalyonhal:oai:HAL:hal-04301204v1
record_format openpolar
institution Open Polar
collection INSA Lyon HAL (Institut National des Sciences Appliquées)
op_collection_id ftinsalyonhal
language English
topic Quasi-geostrophic flows Geostrophic turbulence Ocean processes
Quasi-geostrophic flows
Geostrophic turbulence
Ocean processes
[PHYS.MECA.MEFL]Physics [physics]/Mechanics [physics]/Fluid mechanics [physics.class-ph]
spellingShingle Quasi-geostrophic flows Geostrophic turbulence Ocean processes
Quasi-geostrophic flows
Geostrophic turbulence
Ocean processes
[PHYS.MECA.MEFL]Physics [physics]/Mechanics [physics]/Fluid mechanics [physics.class-ph]
Meunier, Julie
Miquel, Benjamin
Gallet, Basile
A direct derivation of the Gent–McWilliams/Redi diffusion tensor from quasi-geostrophic dynamics
topic_facet Quasi-geostrophic flows Geostrophic turbulence Ocean processes
Quasi-geostrophic flows
Geostrophic turbulence
Ocean processes
[PHYS.MECA.MEFL]Physics [physics]/Mechanics [physics]/Fluid mechanics [physics.class-ph]
description The transport induced by ocean mesoscale eddies remains unresolved in most state-of-the-art climate models and needs to be parametrized instead. The natural scale separation between the forcing and the emergent turbulent flow calls for a diffusive parametrization, where the eddy-induced fluxes are related to the large-scale gradients by a diffusion tensor. The standard parametrization scheme in climate modelling consists in adopting the Gent–McWilliams/Redi (GM/R) form for the diffusion tensor, initially put forward based on physical intuition and educated guesses before being put on firm analytical footing using a thickness-weighted average (TWA). In the present contribution, we provide a direct derivation of this diffusion tensor from the quasi-geostrophic (QG) dynamics of a horizontally homogeneous three-dimensional patch of ocean hosting a large-scale vertically sheared zonal flow on the $\beta$ plane. The derivation hinges on the identification of a useful cross-invariant defined as the product of the buoyancy and QG potential vorticity fluctuations. While less general than the TWA approach, the present QG framework leads to rigorous constraints on the diffusion tensor. First, there is no diapycnal diffusivity arising in the QG GM/R tensor for low viscosity and small-scale diffusivities. The diffusion tensor then involves only two vertically dependent coefficients, namely the GM transport coefficient $K_{GM}(z)$ and the Redi diffusivity $K_R(z)$ . Second, as identified already by previous authors, the vertical structures of the two coefficients are related by the so-called Taylor–Bretherton relation. Finally, while the two coefficients differ generically in the interior of the water column, we show that they are equal to one another near the surface and near the bottom of the domain for low-enough dissipative coefficients. We illustrate these findings by simulating numerically the QG dynamics of a horizontally homogeneous patch of ocean hosting a vertically sheared zonal current resembling the Antarctic ...
author2 Service de physique de l'état condensé (SPEC - UMR3680)
Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)
Laboratoire de Mecanique des Fluides et d'Acoustique (LMFA)
École Centrale de Lyon (ECL)
Université de Lyon-Université de Lyon-Université Claude Bernard Lyon 1 (UCBL)
Université de Lyon-Institut National des Sciences Appliquées de Lyon (INSA Lyon)
Université de Lyon-Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Centre National de la Recherche Scientifique (CNRS)
European Project: 757239,FLAVE
format Article in Journal/Newspaper
author Meunier, Julie
Miquel, Benjamin
Gallet, Basile
author_facet Meunier, Julie
Miquel, Benjamin
Gallet, Basile
author_sort Meunier, Julie
title A direct derivation of the Gent–McWilliams/Redi diffusion tensor from quasi-geostrophic dynamics
title_short A direct derivation of the Gent–McWilliams/Redi diffusion tensor from quasi-geostrophic dynamics
title_full A direct derivation of the Gent–McWilliams/Redi diffusion tensor from quasi-geostrophic dynamics
title_fullStr A direct derivation of the Gent–McWilliams/Redi diffusion tensor from quasi-geostrophic dynamics
title_full_unstemmed A direct derivation of the Gent–McWilliams/Redi diffusion tensor from quasi-geostrophic dynamics
title_sort direct derivation of the gent–mcwilliams/redi diffusion tensor from quasi-geostrophic dynamics
publisher HAL CCSD
publishDate 2023
url https://hal.science/hal-04301204
https://hal.science/hal-04301204/document
https://hal.science/hal-04301204/file/2304.09481.pdf
https://doi.org/10.1017/jfm.2023.347
genre Antarc*
Antarctic
genre_facet Antarc*
Antarctic
op_source ISSN: 0022-1120
EISSN: 1469-7645
Journal of Fluid Mechanics
https://hal.science/hal-04301204
Journal of Fluid Mechanics, 2023, 963, pp.A22. ⟨10.1017/jfm.2023.347⟩
op_relation info:eu-repo/semantics/altIdentifier/arxiv/2304.09481
info:eu-repo/semantics/altIdentifier/doi/10.1017/jfm.2023.347
info:eu-repo/grantAgreement//757239/EU/Energetics of natural turbulent flows: the impact of waves and radiation./FLAVE
hal-04301204
https://hal.science/hal-04301204
https://hal.science/hal-04301204/document
https://hal.science/hal-04301204/file/2304.09481.pdf
ARXIV: 2304.09481
doi:10.1017/jfm.2023.347
op_rights http://creativecommons.org/licenses/by-nc-sa/
info:eu-repo/semantics/OpenAccess
op_doi https://doi.org/10.1017/jfm.2023.347
container_title Journal of Fluid Mechanics
container_volume 963
_version_ 1786789635367632896
spelling ftinsalyonhal:oai:HAL:hal-04301204v1 2023-12-31T10:00:40+01:00 A direct derivation of the Gent–McWilliams/Redi diffusion tensor from quasi-geostrophic dynamics Meunier, Julie Miquel, Benjamin Gallet, Basile Service de physique de l'état condensé (SPEC - UMR3680) Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS) Laboratoire de Mecanique des Fluides et d'Acoustique (LMFA) École Centrale de Lyon (ECL) Université de Lyon-Université de Lyon-Université Claude Bernard Lyon 1 (UCBL) Université de Lyon-Institut National des Sciences Appliquées de Lyon (INSA Lyon) Université de Lyon-Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Centre National de la Recherche Scientifique (CNRS) European Project: 757239,FLAVE 2023-05-19 https://hal.science/hal-04301204 https://hal.science/hal-04301204/document https://hal.science/hal-04301204/file/2304.09481.pdf https://doi.org/10.1017/jfm.2023.347 en eng HAL CCSD Cambridge University Press (CUP) info:eu-repo/semantics/altIdentifier/arxiv/2304.09481 info:eu-repo/semantics/altIdentifier/doi/10.1017/jfm.2023.347 info:eu-repo/grantAgreement//757239/EU/Energetics of natural turbulent flows: the impact of waves and radiation./FLAVE hal-04301204 https://hal.science/hal-04301204 https://hal.science/hal-04301204/document https://hal.science/hal-04301204/file/2304.09481.pdf ARXIV: 2304.09481 doi:10.1017/jfm.2023.347 http://creativecommons.org/licenses/by-nc-sa/ info:eu-repo/semantics/OpenAccess ISSN: 0022-1120 EISSN: 1469-7645 Journal of Fluid Mechanics https://hal.science/hal-04301204 Journal of Fluid Mechanics, 2023, 963, pp.A22. ⟨10.1017/jfm.2023.347⟩ Quasi-geostrophic flows Geostrophic turbulence Ocean processes Quasi-geostrophic flows Geostrophic turbulence Ocean processes [PHYS.MECA.MEFL]Physics [physics]/Mechanics [physics]/Fluid mechanics [physics.class-ph] info:eu-repo/semantics/article Journal articles 2023 ftinsalyonhal https://doi.org/10.1017/jfm.2023.347 2023-12-06T17:28:40Z The transport induced by ocean mesoscale eddies remains unresolved in most state-of-the-art climate models and needs to be parametrized instead. The natural scale separation between the forcing and the emergent turbulent flow calls for a diffusive parametrization, where the eddy-induced fluxes are related to the large-scale gradients by a diffusion tensor. The standard parametrization scheme in climate modelling consists in adopting the Gent–McWilliams/Redi (GM/R) form for the diffusion tensor, initially put forward based on physical intuition and educated guesses before being put on firm analytical footing using a thickness-weighted average (TWA). In the present contribution, we provide a direct derivation of this diffusion tensor from the quasi-geostrophic (QG) dynamics of a horizontally homogeneous three-dimensional patch of ocean hosting a large-scale vertically sheared zonal flow on the $\beta$ plane. The derivation hinges on the identification of a useful cross-invariant defined as the product of the buoyancy and QG potential vorticity fluctuations. While less general than the TWA approach, the present QG framework leads to rigorous constraints on the diffusion tensor. First, there is no diapycnal diffusivity arising in the QG GM/R tensor for low viscosity and small-scale diffusivities. The diffusion tensor then involves only two vertically dependent coefficients, namely the GM transport coefficient $K_{GM}(z)$ and the Redi diffusivity $K_R(z)$ . Second, as identified already by previous authors, the vertical structures of the two coefficients are related by the so-called Taylor–Bretherton relation. Finally, while the two coefficients differ generically in the interior of the water column, we show that they are equal to one another near the surface and near the bottom of the domain for low-enough dissipative coefficients. We illustrate these findings by simulating numerically the QG dynamics of a horizontally homogeneous patch of ocean hosting a vertically sheared zonal current resembling the Antarctic ... Article in Journal/Newspaper Antarc* Antarctic INSA Lyon HAL (Institut National des Sciences Appliquées) Journal of Fluid Mechanics 963