Linking environmental prokaryotic viruses and their host through CRISPRs

International audience The ecological pressure that viruses place on microbial communities is not only based on predation, but also on gene transfer. In order to determine the potential impact of viruses and transduction, we need a better understanding of the dynamics of interactions between viruses...

Full description

Bibliographic Details
Published in:FEMS Microbiology Ecology
Main Authors: Sanguino Casado, Laura, Franqueville, Laure, Vogel, Timothy M., Larose, Catherine
Other Authors: Ampère, Département Bioingénierie (BioIng), Ampère (AMPERE), École Centrale de Lyon (ECL), Université de Lyon-Université de Lyon-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Institut National des Sciences Appliquées de Lyon (INSA Lyon), Université de Lyon-Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Centre National de la Recherche Scientifique (CNRS)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE)-École Centrale de Lyon (ECL), Université de Lyon-Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Centre National de la Recherche Scientifique (CNRS)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE)
Format: Article in Journal/Newspaper
Language:English
Published: HAL CCSD 2015
Subjects:
Online Access:https://hal.science/hal-01589168
https://doi.org/10.1093/femsec/fiv046
Description
Summary:International audience The ecological pressure that viruses place on microbial communities is not only based on predation, but also on gene transfer. In order to determine the potential impact of viruses and transduction, we need a better understanding of the dynamics of interactions between viruses and their hosts in the environment. Data on environmental viruses are scarce, and methods for tracking their interactions with prokaryotes are needed. Clustered regularly interspaced short palindromic repeats (CRISPRs), which contain viral sequences in bacterial genomes, might help document the history of virus-host interactions in the environment. In this study, a bioinformatics network linking viruses and their hosts using CRISPR sequences obtained from metagenomic data was developed and applied to metagenomes from Arctic glacial ice and soil. The application of our network approach showed that putative interactions were more commonly detected in the ice samples than the soil which would be consistent with the ice viral-bacterial interactions being more dynamic than those in soil. Further analysis of the viral sequences in the CRISPRs indicated that Ralstonia phages might be agents of transduction in the Arctic glacial ice.