Guarded hot plate, optical scanning, transient divided bar: comparison of steady-state and transient methods to assess rock thermal conductivity.

Thermal conductivity of rocks is a key parameter to model and design both deep and shallow geothermal systems relying on heat transfer simulations. However, in most cases, these models are based on literature data or laboratory measurements with high or unknown uncertainty. Three different laborator...

Full description

Bibliographic Details
Main Authors: Miranda, Mafalda Alexandra, Chicco, Jessica, Giordano, Nicolo, Mandrone, Giuseppe, Raymond, Jasmin
Format: Other/Unknown Material
Language:English
Subjects:
Online Access:https://espace.inrs.ca/id/eprint/11340/
https://espace.inrs.ca/id/eprint/11340/1/C3654.pdf
id ftinrsquebec:oai:espace.inrs.ca:11340
record_format openpolar
spelling ftinrsquebec:oai:espace.inrs.ca:11340 2023-05-15T17:05:42+02:00 Guarded hot plate, optical scanning, transient divided bar: comparison of steady-state and transient methods to assess rock thermal conductivity. Miranda, Mafalda Alexandra Chicco, Jessica Giordano, Nicolo Mandrone, Giuseppe Raymond, Jasmin application/pdf https://espace.inrs.ca/id/eprint/11340/ https://espace.inrs.ca/id/eprint/11340/1/C3654.pdf en eng https://espace.inrs.ca/id/eprint/11340/1/C3654.pdf Miranda, Mafalda Alexandra, Chicco, Jessica, Giordano, Nicolo, Mandrone, Giuseppe et Raymond, Jasmin orcid:0000-0002-7486-9185 . Guarded hot plate, optical scanning, transient divided bar: comparison of steady-state and transient methods to assess rock thermal conductivity. In: Resources for Future Generations (RFG), 16-21 juin 2018, Vancouver, Canada. géothermie Document issu d'une conférence ou d'un atelier Non évalué par les pairs ftinrsquebec 2023-02-10T11:46:36Z Thermal conductivity of rocks is a key parameter to model and design both deep and shallow geothermal systems relying on heat transfer simulations. However, in most cases, these models are based on literature data or laboratory measurements with high or unknown uncertainty. Three different laboratory techniques were compared in this work, trying to better understand analysis discrepancy related to the guarded hot plate, the optical scanning and the transient divided bar methods. The first method allows to assess thermal conductivity in steady-state when temperature equilibrium is reached in a small core sample placed between two parallel thermoelectric Peltier elements. The optical scanning technology adopts a moving infrared heat source and temperature sensors to scan diamond cut rock surfaces and thermal conductivity is measured in transient conditions at room temperature. The transient divided bar is a recent modification of the conventional steady-state apparatus and consists of two copper blocks of known conductivity, between which the specimen is interposed. By cooling the lower block with a thermostatic bath, the conductivity is derived from the rate at which the heat leaves the upper block. Rock specimens from two sites in Kuujjuaq (Québec) and Bergen (Norway) were collected to characterize the underground and to evaluate the efficiency of both deep and shallow geothermal systems. The Kuujjuaq samples belong to the Southeastern Churchill Province (1.8 Ga) and the Bergen ones to the Minor Bergen Arc (0.45 Ga). First results show the variability among the three devices ranging from 1 to 15%, with 7% average. The most representative value can be picked depending on the quality of the specimen and knowing advantages and limitations of each method. Other/Unknown Material Kuujjuaq Institut national de la recherche scientifique, Québec: Espace INRS Bergen Kuujjuaq ENVELOPE(-68.398,-68.398,58.100,58.100) Norway Peltier ENVELOPE(-63.495,-63.495,-64.854,-64.854)
institution Open Polar
collection Institut national de la recherche scientifique, Québec: Espace INRS
op_collection_id ftinrsquebec
language English
topic géothermie
spellingShingle géothermie
Miranda, Mafalda Alexandra
Chicco, Jessica
Giordano, Nicolo
Mandrone, Giuseppe
Raymond, Jasmin
Guarded hot plate, optical scanning, transient divided bar: comparison of steady-state and transient methods to assess rock thermal conductivity.
topic_facet géothermie
description Thermal conductivity of rocks is a key parameter to model and design both deep and shallow geothermal systems relying on heat transfer simulations. However, in most cases, these models are based on literature data or laboratory measurements with high or unknown uncertainty. Three different laboratory techniques were compared in this work, trying to better understand analysis discrepancy related to the guarded hot plate, the optical scanning and the transient divided bar methods. The first method allows to assess thermal conductivity in steady-state when temperature equilibrium is reached in a small core sample placed between two parallel thermoelectric Peltier elements. The optical scanning technology adopts a moving infrared heat source and temperature sensors to scan diamond cut rock surfaces and thermal conductivity is measured in transient conditions at room temperature. The transient divided bar is a recent modification of the conventional steady-state apparatus and consists of two copper blocks of known conductivity, between which the specimen is interposed. By cooling the lower block with a thermostatic bath, the conductivity is derived from the rate at which the heat leaves the upper block. Rock specimens from two sites in Kuujjuaq (Québec) and Bergen (Norway) were collected to characterize the underground and to evaluate the efficiency of both deep and shallow geothermal systems. The Kuujjuaq samples belong to the Southeastern Churchill Province (1.8 Ga) and the Bergen ones to the Minor Bergen Arc (0.45 Ga). First results show the variability among the three devices ranging from 1 to 15%, with 7% average. The most representative value can be picked depending on the quality of the specimen and knowing advantages and limitations of each method.
format Other/Unknown Material
author Miranda, Mafalda Alexandra
Chicco, Jessica
Giordano, Nicolo
Mandrone, Giuseppe
Raymond, Jasmin
author_facet Miranda, Mafalda Alexandra
Chicco, Jessica
Giordano, Nicolo
Mandrone, Giuseppe
Raymond, Jasmin
author_sort Miranda, Mafalda Alexandra
title Guarded hot plate, optical scanning, transient divided bar: comparison of steady-state and transient methods to assess rock thermal conductivity.
title_short Guarded hot plate, optical scanning, transient divided bar: comparison of steady-state and transient methods to assess rock thermal conductivity.
title_full Guarded hot plate, optical scanning, transient divided bar: comparison of steady-state and transient methods to assess rock thermal conductivity.
title_fullStr Guarded hot plate, optical scanning, transient divided bar: comparison of steady-state and transient methods to assess rock thermal conductivity.
title_full_unstemmed Guarded hot plate, optical scanning, transient divided bar: comparison of steady-state and transient methods to assess rock thermal conductivity.
title_sort guarded hot plate, optical scanning, transient divided bar: comparison of steady-state and transient methods to assess rock thermal conductivity.
url https://espace.inrs.ca/id/eprint/11340/
https://espace.inrs.ca/id/eprint/11340/1/C3654.pdf
long_lat ENVELOPE(-68.398,-68.398,58.100,58.100)
ENVELOPE(-63.495,-63.495,-64.854,-64.854)
geographic Bergen
Kuujjuaq
Norway
Peltier
geographic_facet Bergen
Kuujjuaq
Norway
Peltier
genre Kuujjuaq
genre_facet Kuujjuaq
op_relation https://espace.inrs.ca/id/eprint/11340/1/C3654.pdf
Miranda, Mafalda Alexandra, Chicco, Jessica, Giordano, Nicolo, Mandrone, Giuseppe et Raymond, Jasmin orcid:0000-0002-7486-9185 . Guarded hot plate, optical scanning, transient divided bar: comparison of steady-state and transient methods to assess rock thermal conductivity. In: Resources for Future Generations (RFG), 16-21 juin 2018, Vancouver, Canada.
_version_ 1766060403637354496