Uncertainty quantification and validation of data assimilation methods for an ice sheet model : application to a Greenland marine-terminated glacier, Upernavik Isstrøm

This thesis addresses the significant challenge of estimating future sea-level rise driven by ongoing polar ice sheet mass loss due to current climate change. The uncertainties surrounding this projection are substantial, with potential contributions ranging from 0.5 to over 1.5 meters by 2100. Thes...

Full description

Bibliographic Details
Main Author: Jager, Eliot
Other Authors: Institut des Géosciences de l’Environnement (IGE), Institut de Recherche pour le Développement (IRD)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE)-Université Grenoble Alpes (UGA)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP ), Université Grenoble Alpes (UGA), Université Grenoble Alpes 2020-., Fabien Gillet-Chaulet, Nicolas Champollion, Jérémie Mouginot
Format: Doctoral or Postdoctoral Thesis
Language:French
Published: HAL CCSD 2023
Subjects:
Online Access:https://theses.hal.science/tel-04658964
https://theses.hal.science/tel-04658964/document
https://theses.hal.science/tel-04658964/file/JAGER_2023_archivage.pdf
id ftinraparis:oai:HAL:tel-04658964v1
record_format openpolar
spelling ftinraparis:oai:HAL:tel-04658964v1 2024-09-15T18:07:46+00:00 Uncertainty quantification and validation of data assimilation methods for an ice sheet model : application to a Greenland marine-terminated glacier, Upernavik Isstrøm Quantification d'incertitudes et validation de méthodes d'assimilation de données pour un modèle de calotte polaire : application à un glacier à terminaison marine groenlandais Upernavik Isstrøm Jager, Eliot Institut des Géosciences de l’Environnement (IGE) Institut de Recherche pour le Développement (IRD)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE)-Université Grenoble Alpes (UGA)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP ) Université Grenoble Alpes (UGA) Université Grenoble Alpes 2020-. Fabien Gillet-Chaulet Nicolas Champollion Jérémie Mouginot 2023-12-07 https://theses.hal.science/tel-04658964 https://theses.hal.science/tel-04658964/document https://theses.hal.science/tel-04658964/file/JAGER_2023_archivage.pdf fr fre HAL CCSD NNT: 2023GRALI107 tel-04658964 https://theses.hal.science/tel-04658964 https://theses.hal.science/tel-04658964/document https://theses.hal.science/tel-04658964/file/JAGER_2023_archivage.pdf info:eu-repo/semantics/OpenAccess https://theses.hal.science/tel-04658964 Géophysique [physics.geo-ph]. Université Grenoble Alpes [2020-.], 2023. Français. ⟨NNT : 2023GRALI107⟩ Ensemble method Ice sheet dynamics Modeling Calibration Uncertainty quantification Validation Dynamique glaciaire Modélisation Méthode d'ensemble Quantification d'incertitudes [PHYS.PHYS.PHYS-GEO-PH]Physics [physics]/Physics [physics]/Geophysics [physics.geo-ph] info:eu-repo/semantics/doctoralThesis Theses 2023 ftinraparis 2024-07-30T14:12:32Z This thesis addresses the significant challenge of estimating future sea-level rise driven by ongoing polar ice sheet mass loss due to current climate change. The uncertainties surrounding this projection are substantial, with potential contributions ranging from 0.5 to over 1.5 meters by 2100. These uncertainties primarily stem from limited observations regarding the current state of polar ice sheet and their interactions with the atmosphere and ocean, known as forcings. However, the growing availability of satellite data presents new opportunities. This thesis pursues two primary objectives regarding their utilization: firstly, evaluating the ability of polar ice sheet models to replicate this data over several decades, and secondly, exploring methods to reduce uncertainties related to future sea-level rise.To address these challenges and refine our methods, we focused on Upernavik Isstrøm, a tidewater glacier, employing an ice sheet model (Elmer/Ice). We developed an initialisation method that accounts for model uncertainties (parameters, initial geometry, forcings) through an ensemble approach. This method enables a model calibrating a friction parameter using inverse methods to reproduce past observations of velocity and elevations changes. To achieve this, the friction parameterisation of the model must consider the subglacial hydrology effect. When the glacier front retreats, it brings more subglacial water upstream, lubricating the contact with the bedrock. Failing to account for this effect prevents the model from replicating observed acceleration. In the next step, we propagated the ensemble of members obtained at the end of the simulation into the future. This involved incorporating future forcing uncertainties, such as greenhouse gas emission scenarios, climate model uncertainties, and oceanic forcing uncertainties. We also developed a calibration approach to give more weight to model members that best replicated past observations while ensuring the model did not overfit, to see if this refines ... Doctoral or Postdoctoral Thesis glacier Greenland groenlandais Ice Sheet Tidewater Upernavik Institut National de la Recherche Agronomique: ProdINRA
institution Open Polar
collection Institut National de la Recherche Agronomique: ProdINRA
op_collection_id ftinraparis
language French
topic Ensemble method
Ice sheet dynamics
Modeling
Calibration
Uncertainty quantification
Validation
Dynamique glaciaire
Modélisation
Méthode d'ensemble
Quantification d'incertitudes
[PHYS.PHYS.PHYS-GEO-PH]Physics [physics]/Physics [physics]/Geophysics [physics.geo-ph]
spellingShingle Ensemble method
Ice sheet dynamics
Modeling
Calibration
Uncertainty quantification
Validation
Dynamique glaciaire
Modélisation
Méthode d'ensemble
Quantification d'incertitudes
[PHYS.PHYS.PHYS-GEO-PH]Physics [physics]/Physics [physics]/Geophysics [physics.geo-ph]
Jager, Eliot
Uncertainty quantification and validation of data assimilation methods for an ice sheet model : application to a Greenland marine-terminated glacier, Upernavik Isstrøm
topic_facet Ensemble method
Ice sheet dynamics
Modeling
Calibration
Uncertainty quantification
Validation
Dynamique glaciaire
Modélisation
Méthode d'ensemble
Quantification d'incertitudes
[PHYS.PHYS.PHYS-GEO-PH]Physics [physics]/Physics [physics]/Geophysics [physics.geo-ph]
description This thesis addresses the significant challenge of estimating future sea-level rise driven by ongoing polar ice sheet mass loss due to current climate change. The uncertainties surrounding this projection are substantial, with potential contributions ranging from 0.5 to over 1.5 meters by 2100. These uncertainties primarily stem from limited observations regarding the current state of polar ice sheet and their interactions with the atmosphere and ocean, known as forcings. However, the growing availability of satellite data presents new opportunities. This thesis pursues two primary objectives regarding their utilization: firstly, evaluating the ability of polar ice sheet models to replicate this data over several decades, and secondly, exploring methods to reduce uncertainties related to future sea-level rise.To address these challenges and refine our methods, we focused on Upernavik Isstrøm, a tidewater glacier, employing an ice sheet model (Elmer/Ice). We developed an initialisation method that accounts for model uncertainties (parameters, initial geometry, forcings) through an ensemble approach. This method enables a model calibrating a friction parameter using inverse methods to reproduce past observations of velocity and elevations changes. To achieve this, the friction parameterisation of the model must consider the subglacial hydrology effect. When the glacier front retreats, it brings more subglacial water upstream, lubricating the contact with the bedrock. Failing to account for this effect prevents the model from replicating observed acceleration. In the next step, we propagated the ensemble of members obtained at the end of the simulation into the future. This involved incorporating future forcing uncertainties, such as greenhouse gas emission scenarios, climate model uncertainties, and oceanic forcing uncertainties. We also developed a calibration approach to give more weight to model members that best replicated past observations while ensuring the model did not overfit, to see if this refines ...
author2 Institut des Géosciences de l’Environnement (IGE)
Institut de Recherche pour le Développement (IRD)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE)-Université Grenoble Alpes (UGA)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )
Université Grenoble Alpes (UGA)
Université Grenoble Alpes 2020-.
Fabien Gillet-Chaulet
Nicolas Champollion
Jérémie Mouginot
format Doctoral or Postdoctoral Thesis
author Jager, Eliot
author_facet Jager, Eliot
author_sort Jager, Eliot
title Uncertainty quantification and validation of data assimilation methods for an ice sheet model : application to a Greenland marine-terminated glacier, Upernavik Isstrøm
title_short Uncertainty quantification and validation of data assimilation methods for an ice sheet model : application to a Greenland marine-terminated glacier, Upernavik Isstrøm
title_full Uncertainty quantification and validation of data assimilation methods for an ice sheet model : application to a Greenland marine-terminated glacier, Upernavik Isstrøm
title_fullStr Uncertainty quantification and validation of data assimilation methods for an ice sheet model : application to a Greenland marine-terminated glacier, Upernavik Isstrøm
title_full_unstemmed Uncertainty quantification and validation of data assimilation methods for an ice sheet model : application to a Greenland marine-terminated glacier, Upernavik Isstrøm
title_sort uncertainty quantification and validation of data assimilation methods for an ice sheet model : application to a greenland marine-terminated glacier, upernavik isstrøm
publisher HAL CCSD
publishDate 2023
url https://theses.hal.science/tel-04658964
https://theses.hal.science/tel-04658964/document
https://theses.hal.science/tel-04658964/file/JAGER_2023_archivage.pdf
genre glacier
Greenland
groenlandais
Ice Sheet
Tidewater
Upernavik
genre_facet glacier
Greenland
groenlandais
Ice Sheet
Tidewater
Upernavik
op_source https://theses.hal.science/tel-04658964
Géophysique [physics.geo-ph]. Université Grenoble Alpes [2020-.], 2023. Français. ⟨NNT : 2023GRALI107⟩
op_relation NNT: 2023GRALI107
tel-04658964
https://theses.hal.science/tel-04658964
https://theses.hal.science/tel-04658964/document
https://theses.hal.science/tel-04658964/file/JAGER_2023_archivage.pdf
op_rights info:eu-repo/semantics/OpenAccess
_version_ 1810445131960025088