Quantifying the processes at the root of the observed acceleration of icestreams from inverse methods

The current global warming has direct consequences on ice-sheet mass loss. Reproducing the responsible mechanisms and forecasting the potential ice-sheets contribution to 21st century sea level rise is one of the major challenges in ice-sheet and ice flow modelling. Ice flow models are now routinely...

Full description

Bibliographic Details
Main Author: Mosbeux, Cyrille
Other Authors: Laboratoire de glaciologie et géophysique de l'environnement (LGGE), Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Observatoire des Sciences de l'Univers de Grenoble (OSUG ), Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Institut national des sciences de l'Univers (INSU - CNRS)-Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA)-Université Savoie Mont Blanc (USMB Université de Savoie Université de Chambéry )-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes 2016-2019 (UGA 2016-2019 )-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA)-Université Savoie Mont Blanc (USMB Université de Savoie Université de Chambéry )-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes 2016-2019 (UGA 2016-2019 ), Université Grenoble Alpes, Olivier Gagliardini, Fabien Gillet-Chaulet
Format: Doctoral or Postdoctoral Thesis
Language:French
Published: HAL CCSD 2016
Subjects:
Online Access:https://theses.hal.science/tel-01688570
https://theses.hal.science/tel-01688570/document
https://theses.hal.science/tel-01688570/file/Mosbeux_2016_archivage.pdf
Description
Summary:The current global warming has direct consequences on ice-sheet mass loss. Reproducing the responsible mechanisms and forecasting the potential ice-sheets contribution to 21st century sea level rise is one of the major challenges in ice-sheet and ice flow modelling. Ice flow models are now routinely used to forecast the potential ice-sheets contribution to sea level rise. Such short term simulations are very sensitive to model initial state, usually build from field observations. However, some parameters, such as the basal friction between icesheet and bedrock as well as the basal topography, are still badly known because of a lake of direct observations or large uncertainty on measurements. Improving the knowledge of these two parameters for Greenland and Antarctica is therefore a prerequisite for making reliable projections. Data assimilation and inverse methods have been developed in order to overcome this problem. This thesis presents two different assimilation algorithms to better constrain simulaneouslybasal friction and bedrock elevation parameters using surface observations. The first algorithm is entierly based on adjoint method while the second algorithm uses a cycling method coupling inversion of basal friction with adjoint method and inversion of bedrock topography with nudging method. Both algorithms have been implemented in the finite element ice sheet and ice flow model Elmer/Ice and tested in a twin experiment showing a clear improvement of both parameters knowledge. The application of both algorithms to regions such as the Wilkes Land in Antartica reduces the uncertainty on basal conditions, for instance providing more details to the bedrock geometry when compared to usual DEM. Moreover,the reconstruction of both bedrock elevation and basal friction significantly decreases ice flux divergence anomalies when compared to classical methods where only friction is inversed. We finaly sudy the impact of such inversion on pronostic simulation in order to compare the efficiency of the two algorithms to ...