Comparative carbon cycle dynamics of the present and last interglacial

International audience Changes in temperature and carbon dioxide during glacial cycles recorded in Antarctic ice cores are tightly coupled. However, this relationship does not hold for interglacials. While climate cooled towards the end of both the last (Eemian) and present (Holocene) interglacials,...

Full description

Bibliographic Details
Published in:Quaternary Science Reviews
Main Authors: Brovkin, Victor, Brücher, Tim, Kleinen, Thomas, Zaehle, Sönke, Joos, Fortunat, Roth, Raphaël, Spahni, Renato, Schmitt, Jochen, Fischer, Hubertus, Leuenberger, Markus, Stone, Emma J., Ridgwell, Andy, Chappellaz, Jerome, Kehrwald, Natalie, Blunier, Thomas, Dahl-Jensen, Dorthe
Other Authors: Max Planck Institute for Meteorology (MPI-M), Max-Planck-Gesellschaft, Biogeochemical Systems Department Jena, Max Planck Institute for Biogeochemistry (MPI-BGC), Max-Planck-Gesellschaft-Max-Planck-Gesellschaft, Climate and Environmental Physics Bern (CEP), Physikalisches Institut Bern, Universität Bern = University of Bern = Université de Berne (UNIBE)-Universität Bern = University of Bern = Université de Berne (UNIBE), University of Bristol Bristol, Université Grenoble Alpes 2016-2019 (UGA 2016-2019 ), Laboratoire de glaciologie et géophysique de l'environnement (LGGE), Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Observatoire des Sciences de l'Univers de Grenoble (OSUG ), Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Institut national des sciences de l'Univers (INSU - CNRS)-Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA)-Université Savoie Mont Blanc (USMB Université de Savoie Université de Chambéry )-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes 2016-2019 (UGA 2016-2019 )-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA)-Université Savoie Mont Blanc (USMB Université de Savoie Université de Chambéry )-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes 2016-2019 (UGA 2016-2019 ), Department of Environmental Sciences, Informatics and Statistics Venezia, University of Ca’ Foscari Venice, Italy, Centre for Ice and Climate Copenhagen, Niels Bohr Institute Copenhagen (NBI), Faculty of Science Copenhagen, University of Copenhagen = Københavns Universitet (UCPH)-University of Copenhagen = Københavns Universitet (UCPH)-Faculty of Science Copenhagen, University of Copenhagen = Københavns Universitet (UCPH)-University of Copenhagen = Københavns Universitet (UCPH)
Format: Article in Journal/Newspaper
Language:English
Published: HAL CCSD 2016
Subjects:
Ice
Online Access:https://insu.hal.science/insu-01352021
https://insu.hal.science/insu-01352021/document
https://insu.hal.science/insu-01352021/file/1-s2.0-S0277379116300300-main.pdf
https://doi.org/10.1016/j.quascirev.2016.01.028
id ftinraparis:oai:HAL:insu-01352021v1
record_format openpolar
institution Open Polar
collection Institut National de la Recherche Agronomique: ProdINRA
op_collection_id ftinraparis
language English
topic Carbon cycle
Climate
Models
Interglacials
The Holocene
The Eemian
Peatland
Fire
Coral reef
[SDE]Environmental Sciences
spellingShingle Carbon cycle
Climate
Models
Interglacials
The Holocene
The Eemian
Peatland
Fire
Coral reef
[SDE]Environmental Sciences
Brovkin, Victor
Brücher, Tim
Kleinen, Thomas
Zaehle, Sönke
Joos, Fortunat
Roth, Raphaël
Spahni, Renato
Schmitt, Jochen
Fischer, Hubertus
Leuenberger, Markus
Stone, Emma J.
Ridgwell, Andy
Chappellaz, Jerome
Kehrwald, Natalie
Blunier, Thomas
Dahl-Jensen, Dorthe
Comparative carbon cycle dynamics of the present and last interglacial
topic_facet Carbon cycle
Climate
Models
Interglacials
The Holocene
The Eemian
Peatland
Fire
Coral reef
[SDE]Environmental Sciences
description International audience Changes in temperature and carbon dioxide during glacial cycles recorded in Antarctic ice cores are tightly coupled. However, this relationship does not hold for interglacials. While climate cooled towards the end of both the last (Eemian) and present (Holocene) interglacials, CO2 remained stable during the Eemian while rising in the Holocene. We identify and review twelve biogeochemical mechanisms of terrestrial (vegetation dynamics and CO2 fertilization, land use, wildfire, accumulation of peat, changes in permafrost carbon, subaerial volcanic outgassing) and marine origin (changes in sea surface temperature, carbonate compensation to deglaciation and terrestrial biosphere regrowth, shallow-water carbonate sedimentation, changes in the soft tissue pump, and methane hydrates), which potentially may have contributed to the CO2 dynamics during interglacials but which remain not well quantified. We use three Earth System Models (ESMs) of intermediate complexity to compare effects of selected mechanisms on the interglacial CO2 and δ13CO2 changes, focusing on those with substantial potential impacts: namely carbonate sedimentation in shallow waters, peat growth, and (in the case of the Holocene) human land use. A set of specified carbon cycle forcings could qualitatively explain atmospheric CO2 dynamics from 8 ka BP to the pre-industrial. However, when applied to Eemian boundary conditions from 126 to 115 ka BP, the same set of forcings led to disagreement with the observed direction of CO2 changes after 122 ka BP. This failure to simulate late-Eemian CO2 dynamics could be a result of the imposed forcings such as prescribed CaCO3 accumulation and/or an incorrect response of simulated terrestrial carbon to the surface cooling at the end of the interglacial. These experiments also reveal that key natural processes of interglacial CO2 dynamics – shallow water CaCO3 accumulation, peat and permafrost carbon dynamics - are not well represented in the current ESMs. Global-scale modeling of these ...
author2 Max Planck Institute for Meteorology (MPI-M)
Max-Planck-Gesellschaft
Biogeochemical Systems Department Jena
Max Planck Institute for Biogeochemistry (MPI-BGC)
Max-Planck-Gesellschaft-Max-Planck-Gesellschaft
Climate and Environmental Physics Bern (CEP)
Physikalisches Institut Bern
Universität Bern = University of Bern = Université de Berne (UNIBE)-Universität Bern = University of Bern = Université de Berne (UNIBE)
University of Bristol Bristol
Université Grenoble Alpes 2016-2019 (UGA 2016-2019 )
Laboratoire de glaciologie et géophysique de l'environnement (LGGE)
Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Observatoire des Sciences de l'Univers de Grenoble (OSUG )
Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Institut national des sciences de l'Univers (INSU - CNRS)-Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA)-Université Savoie Mont Blanc (USMB Université de Savoie Université de Chambéry )-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes 2016-2019 (UGA 2016-2019 )-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA)-Université Savoie Mont Blanc (USMB Université de Savoie Université de Chambéry )-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes 2016-2019 (UGA 2016-2019 )
Department of Environmental Sciences, Informatics and Statistics Venezia
University of Ca’ Foscari Venice, Italy
Centre for Ice and Climate Copenhagen
Niels Bohr Institute Copenhagen (NBI)
Faculty of Science Copenhagen
University of Copenhagen = Københavns Universitet (UCPH)-University of Copenhagen = Københavns Universitet (UCPH)-Faculty of Science Copenhagen
University of Copenhagen = Københavns Universitet (UCPH)-University of Copenhagen = Københavns Universitet (UCPH)
format Article in Journal/Newspaper
author Brovkin, Victor
Brücher, Tim
Kleinen, Thomas
Zaehle, Sönke
Joos, Fortunat
Roth, Raphaël
Spahni, Renato
Schmitt, Jochen
Fischer, Hubertus
Leuenberger, Markus
Stone, Emma J.
Ridgwell, Andy
Chappellaz, Jerome
Kehrwald, Natalie
Blunier, Thomas
Dahl-Jensen, Dorthe
author_facet Brovkin, Victor
Brücher, Tim
Kleinen, Thomas
Zaehle, Sönke
Joos, Fortunat
Roth, Raphaël
Spahni, Renato
Schmitt, Jochen
Fischer, Hubertus
Leuenberger, Markus
Stone, Emma J.
Ridgwell, Andy
Chappellaz, Jerome
Kehrwald, Natalie
Blunier, Thomas
Dahl-Jensen, Dorthe
author_sort Brovkin, Victor
title Comparative carbon cycle dynamics of the present and last interglacial
title_short Comparative carbon cycle dynamics of the present and last interglacial
title_full Comparative carbon cycle dynamics of the present and last interglacial
title_fullStr Comparative carbon cycle dynamics of the present and last interglacial
title_full_unstemmed Comparative carbon cycle dynamics of the present and last interglacial
title_sort comparative carbon cycle dynamics of the present and last interglacial
publisher HAL CCSD
publishDate 2016
url https://insu.hal.science/insu-01352021
https://insu.hal.science/insu-01352021/document
https://insu.hal.science/insu-01352021/file/1-s2.0-S0277379116300300-main.pdf
https://doi.org/10.1016/j.quascirev.2016.01.028
geographic Antarctic
geographic_facet Antarctic
genre Antarc*
Antarctic
Ice
permafrost
genre_facet Antarc*
Antarctic
Ice
permafrost
op_source ISSN: 0277-3791
EISSN: 1873-457X
Quaternary Science Reviews
https://insu.hal.science/insu-01352021
Quaternary Science Reviews, 2016, 137, pp.15-32. ⟨10.1016/j.quascirev.2016.01.028⟩
op_relation info:eu-repo/semantics/altIdentifier/doi/10.1016/j.quascirev.2016.01.028
insu-01352021
https://insu.hal.science/insu-01352021
https://insu.hal.science/insu-01352021/document
https://insu.hal.science/insu-01352021/file/1-s2.0-S0277379116300300-main.pdf
doi:10.1016/j.quascirev.2016.01.028
op_rights http://creativecommons.org/licenses/by-nd/
info:eu-repo/semantics/OpenAccess
op_doi https://doi.org/10.1016/j.quascirev.2016.01.028
container_title Quaternary Science Reviews
container_volume 137
container_start_page 15
op_container_end_page 32
_version_ 1809817107985072128
spelling ftinraparis:oai:HAL:insu-01352021v1 2024-09-09T19:03:05+00:00 Comparative carbon cycle dynamics of the present and last interglacial Brovkin, Victor Brücher, Tim Kleinen, Thomas Zaehle, Sönke Joos, Fortunat Roth, Raphaël Spahni, Renato Schmitt, Jochen Fischer, Hubertus Leuenberger, Markus Stone, Emma J. Ridgwell, Andy Chappellaz, Jerome Kehrwald, Natalie Blunier, Thomas Dahl-Jensen, Dorthe Max Planck Institute for Meteorology (MPI-M) Max-Planck-Gesellschaft Biogeochemical Systems Department Jena Max Planck Institute for Biogeochemistry (MPI-BGC) Max-Planck-Gesellschaft-Max-Planck-Gesellschaft Climate and Environmental Physics Bern (CEP) Physikalisches Institut Bern Universität Bern = University of Bern = Université de Berne (UNIBE)-Universität Bern = University of Bern = Université de Berne (UNIBE) University of Bristol Bristol Université Grenoble Alpes 2016-2019 (UGA 2016-2019 ) Laboratoire de glaciologie et géophysique de l'environnement (LGGE) Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Observatoire des Sciences de l'Univers de Grenoble (OSUG ) Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Institut national des sciences de l'Univers (INSU - CNRS)-Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA)-Université Savoie Mont Blanc (USMB Université de Savoie Université de Chambéry )-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes 2016-2019 (UGA 2016-2019 )-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA)-Université Savoie Mont Blanc (USMB Université de Savoie Université de Chambéry )-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes 2016-2019 (UGA 2016-2019 ) Department of Environmental Sciences, Informatics and Statistics Venezia University of Ca’ Foscari Venice, Italy Centre for Ice and Climate Copenhagen Niels Bohr Institute Copenhagen (NBI) Faculty of Science Copenhagen University of Copenhagen = Københavns Universitet (UCPH)-University of Copenhagen = Københavns Universitet (UCPH)-Faculty of Science Copenhagen University of Copenhagen = Københavns Universitet (UCPH)-University of Copenhagen = Københavns Universitet (UCPH) 2016-04 https://insu.hal.science/insu-01352021 https://insu.hal.science/insu-01352021/document https://insu.hal.science/insu-01352021/file/1-s2.0-S0277379116300300-main.pdf https://doi.org/10.1016/j.quascirev.2016.01.028 en eng HAL CCSD Elsevier info:eu-repo/semantics/altIdentifier/doi/10.1016/j.quascirev.2016.01.028 insu-01352021 https://insu.hal.science/insu-01352021 https://insu.hal.science/insu-01352021/document https://insu.hal.science/insu-01352021/file/1-s2.0-S0277379116300300-main.pdf doi:10.1016/j.quascirev.2016.01.028 http://creativecommons.org/licenses/by-nd/ info:eu-repo/semantics/OpenAccess ISSN: 0277-3791 EISSN: 1873-457X Quaternary Science Reviews https://insu.hal.science/insu-01352021 Quaternary Science Reviews, 2016, 137, pp.15-32. ⟨10.1016/j.quascirev.2016.01.028⟩ Carbon cycle Climate Models Interglacials The Holocene The Eemian Peatland Fire Coral reef [SDE]Environmental Sciences info:eu-repo/semantics/article Journal articles 2016 ftinraparis https://doi.org/10.1016/j.quascirev.2016.01.028 2024-07-30T14:12:32Z International audience Changes in temperature and carbon dioxide during glacial cycles recorded in Antarctic ice cores are tightly coupled. However, this relationship does not hold for interglacials. While climate cooled towards the end of both the last (Eemian) and present (Holocene) interglacials, CO2 remained stable during the Eemian while rising in the Holocene. We identify and review twelve biogeochemical mechanisms of terrestrial (vegetation dynamics and CO2 fertilization, land use, wildfire, accumulation of peat, changes in permafrost carbon, subaerial volcanic outgassing) and marine origin (changes in sea surface temperature, carbonate compensation to deglaciation and terrestrial biosphere regrowth, shallow-water carbonate sedimentation, changes in the soft tissue pump, and methane hydrates), which potentially may have contributed to the CO2 dynamics during interglacials but which remain not well quantified. We use three Earth System Models (ESMs) of intermediate complexity to compare effects of selected mechanisms on the interglacial CO2 and δ13CO2 changes, focusing on those with substantial potential impacts: namely carbonate sedimentation in shallow waters, peat growth, and (in the case of the Holocene) human land use. A set of specified carbon cycle forcings could qualitatively explain atmospheric CO2 dynamics from 8 ka BP to the pre-industrial. However, when applied to Eemian boundary conditions from 126 to 115 ka BP, the same set of forcings led to disagreement with the observed direction of CO2 changes after 122 ka BP. This failure to simulate late-Eemian CO2 dynamics could be a result of the imposed forcings such as prescribed CaCO3 accumulation and/or an incorrect response of simulated terrestrial carbon to the surface cooling at the end of the interglacial. These experiments also reveal that key natural processes of interglacial CO2 dynamics – shallow water CaCO3 accumulation, peat and permafrost carbon dynamics - are not well represented in the current ESMs. Global-scale modeling of these ... Article in Journal/Newspaper Antarc* Antarctic Ice permafrost Institut National de la Recherche Agronomique: ProdINRA Antarctic Quaternary Science Reviews 137 15 32