Simulating optical top-of-atmosphere radiance satellite images over snow-covered rugged terrain
International audience Abstract. The monitoring of snow-covered surfaces on Earth is largely facilitated by the wealth of satellite data available, with increasing spatial resolution and temporal coverage over the last few years. Yet to date, retrievals of snow physical properties still remain compl...
Published in: | The Cryosphere |
---|---|
Main Authors: | , , , , , , |
Other Authors: | , , , , , , , , , , , , , , , , , , , , |
Format: | Article in Journal/Newspaper |
Language: | English |
Published: |
CCSD
2020
|
Subjects: | |
Online Access: | https://hal.science/hal-04988616 https://doi.org/10.5194/tc-14-3995-2020 |
_version_ | 1830576667639152640 |
---|---|
author | Lamare, Maxim Dumont, Marie Picard, Ghislain Larue, Fanny Tuzet, François Delcourt, Clément Arnaud, Laurent |
author2 | Centre d'Etudes de la Neige (CEN) Centre national de recherches météorologiques (CNRM) Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire Midi-Pyrénées (OMP) Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3) Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales Toulouse (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France-Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3) Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales Toulouse (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France-Centre National de la Recherche Scientifique (CNRS)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire Midi-Pyrénées (OMP) Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales Toulouse (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France-Centre National de la Recherche Scientifique (CNRS)-Observatoire des Sciences de l'Univers de Grenoble (Fédération OSUG)-Université Grenoble Alpes (UGA) Université Grenoble Alpes (UGA) Université Joseph Fourier - Grenoble 1 (UJF) University of Sheffield Sheffield Université Toulouse III - Paul Sabatier (UT3) Université de Toulouse (UT) Institut des Géosciences de l’Environnement (IGE) Institut de Recherche pour le Développement (IRD)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE)-Observatoire des Sciences de l'Univers de Grenoble (Fédération OSUG)-Université Grenoble Alpes (UGA)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP) Institut de Recherche pour le Développement (IRD)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Observatoire des Sciences de l'Univers de Grenoble (Fédération OSUG)-Université Grenoble Alpes (UGA)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP) Laboratoire de glaciologie et géophysique de l'environnement (LGGE) Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Observatoire des Sciences de l'Univers de Grenoble (OSUG) Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP)-Institut national des sciences de l'Univers (INSU - CNRS)-Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA)-Université Savoie Mont Blanc (USMB Université de Savoie Université de Chambéry )-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes 2016-2019 (UGA 2016-2019 )-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP)-Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA)-Université Savoie Mont Blanc (USMB Université de Savoie Université de Chambéry )-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes 2016-2019 (UGA 2016-2019 ) Laboratoire de Spectrométrie Ionique et Moléculaire (LASIM) Université Claude Bernard Lyon 1 (UCBL) Université de Lyon-Université de Lyon-Centre National de la Recherche Scientifique (CNRS) |
author_facet | Lamare, Maxim Dumont, Marie Picard, Ghislain Larue, Fanny Tuzet, François Delcourt, Clément Arnaud, Laurent |
author_sort | Lamare, Maxim |
collection | Institut National de la Recherche Agronomique: ProdINRA |
container_issue | 11 |
container_start_page | 3995 |
container_title | The Cryosphere |
container_volume | 14 |
description | International audience Abstract. The monitoring of snow-covered surfaces on Earth is largely facilitated by the wealth of satellite data available, with increasing spatial resolution and temporal coverage over the last few years. Yet to date, retrievals of snow physical properties still remain complicated in mountainous areas, owing to the complex interactions of solar radiation with terrain features such as multiple scattering between slopes, exacerbated over bright surfaces. Existing physically based models of solar radiation across rough scenes are either too complex and resource-demanding for the implementation of systematic satellite image processing, not designed for highly reflective surfaces such as snow, or tied to a specific satellite sensor. This study proposes a new formulation, combining a forward model of solar radiation over rugged terrain with dedicated snow optics into a flexible multi-sensor tool that bridges a gap in the optical remote sensing of snow-covered surfaces in mountainous regions. The model presented here allows one to perform rapid calculations over large snow-covered areas. Good results are obtained even for extreme cases, such as steep shadowed slopes or, on the contrary, strongly illuminated sun-facing slopes. Simulations of Sentinel-3 OLCI (Ocean and Land Colour Instrument) scenes performed over a mountainous region in the French Alps allow us to reduce the bias by up to a factor of 6 in the visible wavelengths compared to methods that account for slope inclination only. Furthermore, the study underlines the contribution of the individual fluxes to the total top-of-atmosphere radiance, highlighting the importance of reflected radiation from surrounding slopes which, in midwinter after a recent snowfall (13 February 2018), accounts on average for 7 % of the signal at 400 nm and 16 % at 1020 nm (on 13 February 2018), as well as of coupled diffuse radiation scattered by the neighbourhood, which contributes to 18 % at 400 nm and 4 % at 1020 nm. Given the importance of these ... |
format | Article in Journal/Newspaper |
genre | The Cryosphere |
genre_facet | The Cryosphere |
geographic | Midwinter |
geographic_facet | Midwinter |
id | ftinraparis:oai:HAL:hal-04988616v1 |
institution | Open Polar |
language | English |
long_lat | ENVELOPE(139.931,139.931,-66.690,-66.690) |
op_collection_id | ftinraparis |
op_container_end_page | 4020 |
op_doi | https://doi.org/10.5194/tc-14-3995-2020 |
op_relation | info:eu-repo/semantics/altIdentifier/doi/10.5194/tc-14-3995-2020 |
op_source | ISSN: 1994-0424 EISSN: 1994-0416 The Cryosphere https://hal.science/hal-04988616 The Cryosphere, 2020, 14 (11), pp.3995-4020. ⟨10.5194/tc-14-3995-2020⟩ |
publishDate | 2020 |
publisher | CCSD |
record_format | openpolar |
spelling | ftinraparis:oai:HAL:hal-04988616v1 2025-04-27T14:36:33+00:00 Simulating optical top-of-atmosphere radiance satellite images over snow-covered rugged terrain Lamare, Maxim Dumont, Marie Picard, Ghislain Larue, Fanny Tuzet, François Delcourt, Clément Arnaud, Laurent Centre d'Etudes de la Neige (CEN) Centre national de recherches météorologiques (CNRM) Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire Midi-Pyrénées (OMP) Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3) Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales Toulouse (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France-Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3) Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales Toulouse (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France-Centre National de la Recherche Scientifique (CNRS)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire Midi-Pyrénées (OMP) Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales Toulouse (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France-Centre National de la Recherche Scientifique (CNRS)-Observatoire des Sciences de l'Univers de Grenoble (Fédération OSUG)-Université Grenoble Alpes (UGA) Université Grenoble Alpes (UGA) Université Joseph Fourier - Grenoble 1 (UJF) University of Sheffield Sheffield Université Toulouse III - Paul Sabatier (UT3) Université de Toulouse (UT) Institut des Géosciences de l’Environnement (IGE) Institut de Recherche pour le Développement (IRD)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE)-Observatoire des Sciences de l'Univers de Grenoble (Fédération OSUG)-Université Grenoble Alpes (UGA)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP) Institut de Recherche pour le Développement (IRD)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Observatoire des Sciences de l'Univers de Grenoble (Fédération OSUG)-Université Grenoble Alpes (UGA)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP) Laboratoire de glaciologie et géophysique de l'environnement (LGGE) Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Observatoire des Sciences de l'Univers de Grenoble (OSUG) Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP)-Institut national des sciences de l'Univers (INSU - CNRS)-Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA)-Université Savoie Mont Blanc (USMB Université de Savoie Université de Chambéry )-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes 2016-2019 (UGA 2016-2019 )-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP)-Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA)-Université Savoie Mont Blanc (USMB Université de Savoie Université de Chambéry )-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes 2016-2019 (UGA 2016-2019 ) Laboratoire de Spectrométrie Ionique et Moléculaire (LASIM) Université Claude Bernard Lyon 1 (UCBL) Université de Lyon-Université de Lyon-Centre National de la Recherche Scientifique (CNRS) 2020-11-14 https://hal.science/hal-04988616 https://doi.org/10.5194/tc-14-3995-2020 en eng CCSD Copernicus info:eu-repo/semantics/altIdentifier/doi/10.5194/tc-14-3995-2020 ISSN: 1994-0424 EISSN: 1994-0416 The Cryosphere https://hal.science/hal-04988616 The Cryosphere, 2020, 14 (11), pp.3995-4020. ⟨10.5194/tc-14-3995-2020⟩ [SDU.STU.GL]Sciences of the Universe [physics]/Earth Sciences/Glaciology info:eu-repo/semantics/article Journal articles 2020 ftinraparis https://doi.org/10.5194/tc-14-3995-2020 2025-04-01T00:58:33Z International audience Abstract. The monitoring of snow-covered surfaces on Earth is largely facilitated by the wealth of satellite data available, with increasing spatial resolution and temporal coverage over the last few years. Yet to date, retrievals of snow physical properties still remain complicated in mountainous areas, owing to the complex interactions of solar radiation with terrain features such as multiple scattering between slopes, exacerbated over bright surfaces. Existing physically based models of solar radiation across rough scenes are either too complex and resource-demanding for the implementation of systematic satellite image processing, not designed for highly reflective surfaces such as snow, or tied to a specific satellite sensor. This study proposes a new formulation, combining a forward model of solar radiation over rugged terrain with dedicated snow optics into a flexible multi-sensor tool that bridges a gap in the optical remote sensing of snow-covered surfaces in mountainous regions. The model presented here allows one to perform rapid calculations over large snow-covered areas. Good results are obtained even for extreme cases, such as steep shadowed slopes or, on the contrary, strongly illuminated sun-facing slopes. Simulations of Sentinel-3 OLCI (Ocean and Land Colour Instrument) scenes performed over a mountainous region in the French Alps allow us to reduce the bias by up to a factor of 6 in the visible wavelengths compared to methods that account for slope inclination only. Furthermore, the study underlines the contribution of the individual fluxes to the total top-of-atmosphere radiance, highlighting the importance of reflected radiation from surrounding slopes which, in midwinter after a recent snowfall (13 February 2018), accounts on average for 7 % of the signal at 400 nm and 16 % at 1020 nm (on 13 February 2018), as well as of coupled diffuse radiation scattered by the neighbourhood, which contributes to 18 % at 400 nm and 4 % at 1020 nm. Given the importance of these ... Article in Journal/Newspaper The Cryosphere Institut National de la Recherche Agronomique: ProdINRA Midwinter ENVELOPE(139.931,139.931,-66.690,-66.690) The Cryosphere 14 11 3995 4020 |
spellingShingle | [SDU.STU.GL]Sciences of the Universe [physics]/Earth Sciences/Glaciology Lamare, Maxim Dumont, Marie Picard, Ghislain Larue, Fanny Tuzet, François Delcourt, Clément Arnaud, Laurent Simulating optical top-of-atmosphere radiance satellite images over snow-covered rugged terrain |
title | Simulating optical top-of-atmosphere radiance satellite images over snow-covered rugged terrain |
title_full | Simulating optical top-of-atmosphere radiance satellite images over snow-covered rugged terrain |
title_fullStr | Simulating optical top-of-atmosphere radiance satellite images over snow-covered rugged terrain |
title_full_unstemmed | Simulating optical top-of-atmosphere radiance satellite images over snow-covered rugged terrain |
title_short | Simulating optical top-of-atmosphere radiance satellite images over snow-covered rugged terrain |
title_sort | simulating optical top-of-atmosphere radiance satellite images over snow-covered rugged terrain |
topic | [SDU.STU.GL]Sciences of the Universe [physics]/Earth Sciences/Glaciology |
topic_facet | [SDU.STU.GL]Sciences of the Universe [physics]/Earth Sciences/Glaciology |
url | https://hal.science/hal-04988616 https://doi.org/10.5194/tc-14-3995-2020 |