Integrated multi-trophic aquaculture systems: energy transfers and food web organization in coastal earthen ponds
International audience Three Ecopath models were built to reproduce 3 experimental treatments carried out in earthen ponds located in Olhão, southern Portugal, to understand the energy transferred and the ecosystem state in integrated multi-trophic aquaculture (IMTA). These earthen ponds behave as s...
Published in: | Aquaculture Environment Interactions |
---|---|
Main Authors: | , , , , , |
Other Authors: | , , , , , , , , , |
Format: | Article in Journal/Newspaper |
Language: | English |
Published: |
HAL CCSD
2020
|
Subjects: | |
Online Access: | https://hal.inrae.fr/hal-04576737 https://doi.org/10.3354/aei00375 |
id |
ftinraparis:oai:HAL:hal-04576737v1 |
---|---|
record_format |
openpolar |
spelling |
ftinraparis:oai:HAL:hal-04576737v1 2024-11-03T14:54:52+00:00 Integrated multi-trophic aquaculture systems: energy transfers and food web organization in coastal earthen ponds Systèmes d'aquaculture multitrophiques intégrés : transferts d'énergie et organisation du réseau trophique dans des étangs côtiers Gamito, Sofia Quental-Ferreira, Hugo Parejo, Aida Aubin, Joël Christensen, Villy Cunha, Maria Emilia Centre of Marine Sciences Faro (CCMAR) University of Algarve Portugal Faculdade de Ciências e Tecnologia Faro (FCT) Universidade do Algarve (UAlg) Instituto Português de Investigação do Mar e da Atmosfera (IPMA) Sol Agro et hydrosystème Spatialisation (SAS) Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE)-Institut Agro Rennes Angers Institut national d'enseignement supérieur pour l'agriculture, l'alimentation et l'environnement (Institut Agro)-Institut national d'enseignement supérieur pour l'agriculture, l'alimentation et l'environnement (Institut Agro) Institute for the Oceans and Fisheries University of British Columbia (UBC) 2020-11-05 https://hal.inrae.fr/hal-04576737 https://doi.org/10.3354/aei00375 en eng HAL CCSD Inter-reseach science publisher info:eu-repo/semantics/altIdentifier/doi/10.3354/aei00375 doi:10.3354/aei00375 WOS: 000594265500001 http://creativecommons.org/licenses/by/ ISSN: 1869-215X Aquaculture Environment Interactions https://hal.inrae.fr/hal-04576737 Aquaculture Environment Interactions, 2020, 12, pp.457-470. ⟨10.3354/aei00375⟩ Integrated multi-trophic aquaculture systems IMTA Earthen pond ecosystems Ecosystem energy transfer Ecopath models Sustainable aquaculture [SDV]Life Sciences [q-bio] info:eu-repo/semantics/article Journal articles 2020 ftinraparis https://doi.org/10.3354/aei00375 2024-10-22T15:00:08Z International audience Three Ecopath models were built to reproduce 3 experimental treatments carried out in earthen ponds located in Olhão, southern Portugal, to understand the energy transferred and the ecosystem state in integrated multi-trophic aquaculture (IMTA). These earthen ponds behave as simplified ecosystems or mesocosms, with well-defined borders, where the relationships between trophic groups can be described through ecosystem modeling. Different combinations of species were produced in these ponds, corresponding to the 3 treatments: (1) fish, oysters and macroalgae (FOM); (2) fish and oysters (FO); and (3) fish and macroalgae (FM). The managed species were meagre Argyrosomus regius , white seabream Diplodus sargus , flathead grey mullet Mugil cephalus , Japanese oyster Crassostrea gigas and sea lettuce Ulva spp. The results showed that the total amount of energy throughput was 15 to 17 times higher when compared with an equivalent naturalized system. The high biomass and low recycling indicated an immature system with low resilience and low stability that demands high rates of water renewal and aeration to maintain good water-quality levels for finfish production. The addition of oysters and macroalgae in the FOM treatment appeared to improve the water quality, since oysters controlled the excess of phytoplankton produced in the ponds by ingesting a fair amount of the phytoplankton, while the macroalgae helped in the absorption of excess nutrients and created a habitat for periphyton and associated macroinvertebrates. Some ecosystem attributes of the FOM ponds approached the values of the naturalized model, suggesting a possible path towards more sustainable aquaculture. Article in Journal/Newspaper Crassostrea gigas Institut National de la Recherche Agronomique: ProdINRA Imta ENVELOPE(156.945,156.945,61.792,61.792) Aquaculture Environment Interactions 12 457 470 |
institution |
Open Polar |
collection |
Institut National de la Recherche Agronomique: ProdINRA |
op_collection_id |
ftinraparis |
language |
English |
topic |
Integrated multi-trophic aquaculture systems IMTA Earthen pond ecosystems Ecosystem energy transfer Ecopath models Sustainable aquaculture [SDV]Life Sciences [q-bio] |
spellingShingle |
Integrated multi-trophic aquaculture systems IMTA Earthen pond ecosystems Ecosystem energy transfer Ecopath models Sustainable aquaculture [SDV]Life Sciences [q-bio] Gamito, Sofia Quental-Ferreira, Hugo Parejo, Aida Aubin, Joël Christensen, Villy Cunha, Maria Emilia Integrated multi-trophic aquaculture systems: energy transfers and food web organization in coastal earthen ponds |
topic_facet |
Integrated multi-trophic aquaculture systems IMTA Earthen pond ecosystems Ecosystem energy transfer Ecopath models Sustainable aquaculture [SDV]Life Sciences [q-bio] |
description |
International audience Three Ecopath models were built to reproduce 3 experimental treatments carried out in earthen ponds located in Olhão, southern Portugal, to understand the energy transferred and the ecosystem state in integrated multi-trophic aquaculture (IMTA). These earthen ponds behave as simplified ecosystems or mesocosms, with well-defined borders, where the relationships between trophic groups can be described through ecosystem modeling. Different combinations of species were produced in these ponds, corresponding to the 3 treatments: (1) fish, oysters and macroalgae (FOM); (2) fish and oysters (FO); and (3) fish and macroalgae (FM). The managed species were meagre Argyrosomus regius , white seabream Diplodus sargus , flathead grey mullet Mugil cephalus , Japanese oyster Crassostrea gigas and sea lettuce Ulva spp. The results showed that the total amount of energy throughput was 15 to 17 times higher when compared with an equivalent naturalized system. The high biomass and low recycling indicated an immature system with low resilience and low stability that demands high rates of water renewal and aeration to maintain good water-quality levels for finfish production. The addition of oysters and macroalgae in the FOM treatment appeared to improve the water quality, since oysters controlled the excess of phytoplankton produced in the ponds by ingesting a fair amount of the phytoplankton, while the macroalgae helped in the absorption of excess nutrients and created a habitat for periphyton and associated macroinvertebrates. Some ecosystem attributes of the FOM ponds approached the values of the naturalized model, suggesting a possible path towards more sustainable aquaculture. |
author2 |
Centre of Marine Sciences Faro (CCMAR) University of Algarve Portugal Faculdade de Ciências e Tecnologia Faro (FCT) Universidade do Algarve (UAlg) Instituto Português de Investigação do Mar e da Atmosfera (IPMA) Sol Agro et hydrosystème Spatialisation (SAS) Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE)-Institut Agro Rennes Angers Institut national d'enseignement supérieur pour l'agriculture, l'alimentation et l'environnement (Institut Agro)-Institut national d'enseignement supérieur pour l'agriculture, l'alimentation et l'environnement (Institut Agro) Institute for the Oceans and Fisheries University of British Columbia (UBC) |
format |
Article in Journal/Newspaper |
author |
Gamito, Sofia Quental-Ferreira, Hugo Parejo, Aida Aubin, Joël Christensen, Villy Cunha, Maria Emilia |
author_facet |
Gamito, Sofia Quental-Ferreira, Hugo Parejo, Aida Aubin, Joël Christensen, Villy Cunha, Maria Emilia |
author_sort |
Gamito, Sofia |
title |
Integrated multi-trophic aquaculture systems: energy transfers and food web organization in coastal earthen ponds |
title_short |
Integrated multi-trophic aquaculture systems: energy transfers and food web organization in coastal earthen ponds |
title_full |
Integrated multi-trophic aquaculture systems: energy transfers and food web organization in coastal earthen ponds |
title_fullStr |
Integrated multi-trophic aquaculture systems: energy transfers and food web organization in coastal earthen ponds |
title_full_unstemmed |
Integrated multi-trophic aquaculture systems: energy transfers and food web organization in coastal earthen ponds |
title_sort |
integrated multi-trophic aquaculture systems: energy transfers and food web organization in coastal earthen ponds |
publisher |
HAL CCSD |
publishDate |
2020 |
url |
https://hal.inrae.fr/hal-04576737 https://doi.org/10.3354/aei00375 |
long_lat |
ENVELOPE(156.945,156.945,61.792,61.792) |
geographic |
Imta |
geographic_facet |
Imta |
genre |
Crassostrea gigas |
genre_facet |
Crassostrea gigas |
op_source |
ISSN: 1869-215X Aquaculture Environment Interactions https://hal.inrae.fr/hal-04576737 Aquaculture Environment Interactions, 2020, 12, pp.457-470. ⟨10.3354/aei00375⟩ |
op_relation |
info:eu-repo/semantics/altIdentifier/doi/10.3354/aei00375 doi:10.3354/aei00375 WOS: 000594265500001 |
op_rights |
http://creativecommons.org/licenses/by/ |
op_doi |
https://doi.org/10.3354/aei00375 |
container_title |
Aquaculture Environment Interactions |
container_volume |
12 |
container_start_page |
457 |
op_container_end_page |
470 |
_version_ |
1814714934340091904 |