What is the utility of measuring gaseous HgII dry deposition using Aerohead samplers?: A review

International audience The most efficient way to quantify HgII inputs to ecosystems is to measure wet and dry deposition. Wet deposition of HgII is determined by measuring Hg concentrations and the volume of precipitation. Dry deposition of HgII is determined through direct measurement and/or determ...

Full description

Bibliographic Details
Published in:Science of The Total Environment
Main Authors: Gustin, Mae Sexauer, Dunham-Cheatham, Sarrah, Osterwalder, Stefan, Magand, Olivier, Dommergue, Aurélien
Other Authors: University of Nevada Reno, Stanford Synchrotron Radiation Lightsource (SSRL SLAC), SLAC National Accelerator Laboratory (SLAC), Stanford University-Stanford University, Institute of Agricultural Sciences Zürich, Eidgenössische Technische Hochschule - Swiss Federal Institute of Technology Zürich (ETH Zürich), Institut des Géosciences de l’Environnement (IGE), Institut de Recherche pour le Développement (IRD)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE)-Université Grenoble Alpes (UGA)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP ), Université Grenoble Alpes (UGA)
Format: Article in Journal/Newspaper
Language:English
Published: HAL CCSD 2024
Subjects:
Online Access:https://hal.science/hal-04377431
https://doi.org/10.1016/j.scitotenv.2023.167895
id ftinraparis:oai:HAL:hal-04377431v1
record_format openpolar
spelling ftinraparis:oai:HAL:hal-04377431v1 2024-06-23T07:45:23+00:00 What is the utility of measuring gaseous HgII dry deposition using Aerohead samplers?: A review Gustin, Mae Sexauer Dunham-Cheatham, Sarrah Osterwalder, Stefan Magand, Olivier Dommergue, Aurélien University of Nevada Reno Stanford Synchrotron Radiation Lightsource (SSRL SLAC) SLAC National Accelerator Laboratory (SLAC) Stanford University-Stanford University Institute of Agricultural Sciences Zürich Eidgenössische Technische Hochschule - Swiss Federal Institute of Technology Zürich (ETH Zürich) Institut des Géosciences de l’Environnement (IGE) Institut de Recherche pour le Développement (IRD)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE)-Université Grenoble Alpes (UGA)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP ) Université Grenoble Alpes (UGA) 2024-01 https://hal.science/hal-04377431 https://doi.org/10.1016/j.scitotenv.2023.167895 en eng HAL CCSD Elsevier info:eu-repo/semantics/altIdentifier/doi/10.1016/j.scitotenv.2023.167895 info:eu-repo/semantics/altIdentifier/pmid/37866618 hal-04377431 https://hal.science/hal-04377431 doi:10.1016/j.scitotenv.2023.167895 PUBMED: 37866618 WOS: 001110460600001 ISSN: 0048-9697 EISSN: 1879-1026 Science of the Total Environment https://hal.science/hal-04377431 Science of the Total Environment, 2024, 907, pp.167895. ⟨10.1016/j.scitotenv.2023.167895⟩ Cation exchange membranes Gaseous oxidized mercury Deposition velocities Regional trends [SDE]Environmental Sciences info:eu-repo/semantics/article Journal articles 2024 ftinraparis https://doi.org/10.1016/j.scitotenv.2023.167895 2024-06-04T15:02:51Z International audience The most efficient way to quantify HgII inputs to ecosystems is to measure wet and dry deposition. Wet deposition of HgII is determined by measuring Hg concentrations and the volume of precipitation. Dry deposition of HgII is determined through direct measurement and/or determined indirectly by measuring air concentrations and using model-generated deposition velocities. Here, data collected using an Aerohead sampler holding cation exchange membranes are summarized, and the utility of this method for understanding dry deposition, and other measurements and processes is discussed. This analysis includes information from publications, and recent data collected at Guadalupe Mountains National Park, Texas, USA, and Amsterdam Island, Southern Indian Ocean. This method primarily measures gaseous HgII and little particulate-bound Hg. The Aerohead method is useful for looking at large-scale trends in deposition, verifying Hg depletion events, calculating dry deposition velocities for compounds with specific chemistry, and identification of sources of HgII. At numerous locations in the western USA, deposition rates were greater at higher elevations due to elevated concentrations associated with longrange transport of atmospheric pollution. When used in tandem with the Reactive Mercury Active System or a dual-channel system, more accurate deposition velocities - that vary as a function of GOM compound chemistry - can be calculated. Article in Journal/Newspaper Amsterdam Island Institut National de la Recherche Agronomique: ProdINRA Indian Science of The Total Environment 907 167895
institution Open Polar
collection Institut National de la Recherche Agronomique: ProdINRA
op_collection_id ftinraparis
language English
topic Cation exchange membranes
Gaseous oxidized mercury
Deposition velocities
Regional trends
[SDE]Environmental Sciences
spellingShingle Cation exchange membranes
Gaseous oxidized mercury
Deposition velocities
Regional trends
[SDE]Environmental Sciences
Gustin, Mae Sexauer
Dunham-Cheatham, Sarrah
Osterwalder, Stefan
Magand, Olivier
Dommergue, Aurélien
What is the utility of measuring gaseous HgII dry deposition using Aerohead samplers?: A review
topic_facet Cation exchange membranes
Gaseous oxidized mercury
Deposition velocities
Regional trends
[SDE]Environmental Sciences
description International audience The most efficient way to quantify HgII inputs to ecosystems is to measure wet and dry deposition. Wet deposition of HgII is determined by measuring Hg concentrations and the volume of precipitation. Dry deposition of HgII is determined through direct measurement and/or determined indirectly by measuring air concentrations and using model-generated deposition velocities. Here, data collected using an Aerohead sampler holding cation exchange membranes are summarized, and the utility of this method for understanding dry deposition, and other measurements and processes is discussed. This analysis includes information from publications, and recent data collected at Guadalupe Mountains National Park, Texas, USA, and Amsterdam Island, Southern Indian Ocean. This method primarily measures gaseous HgII and little particulate-bound Hg. The Aerohead method is useful for looking at large-scale trends in deposition, verifying Hg depletion events, calculating dry deposition velocities for compounds with specific chemistry, and identification of sources of HgII. At numerous locations in the western USA, deposition rates were greater at higher elevations due to elevated concentrations associated with longrange transport of atmospheric pollution. When used in tandem with the Reactive Mercury Active System or a dual-channel system, more accurate deposition velocities - that vary as a function of GOM compound chemistry - can be calculated.
author2 University of Nevada Reno
Stanford Synchrotron Radiation Lightsource (SSRL SLAC)
SLAC National Accelerator Laboratory (SLAC)
Stanford University-Stanford University
Institute of Agricultural Sciences Zürich
Eidgenössische Technische Hochschule - Swiss Federal Institute of Technology Zürich (ETH Zürich)
Institut des Géosciences de l’Environnement (IGE)
Institut de Recherche pour le Développement (IRD)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE)-Université Grenoble Alpes (UGA)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )
Université Grenoble Alpes (UGA)
format Article in Journal/Newspaper
author Gustin, Mae Sexauer
Dunham-Cheatham, Sarrah
Osterwalder, Stefan
Magand, Olivier
Dommergue, Aurélien
author_facet Gustin, Mae Sexauer
Dunham-Cheatham, Sarrah
Osterwalder, Stefan
Magand, Olivier
Dommergue, Aurélien
author_sort Gustin, Mae Sexauer
title What is the utility of measuring gaseous HgII dry deposition using Aerohead samplers?: A review
title_short What is the utility of measuring gaseous HgII dry deposition using Aerohead samplers?: A review
title_full What is the utility of measuring gaseous HgII dry deposition using Aerohead samplers?: A review
title_fullStr What is the utility of measuring gaseous HgII dry deposition using Aerohead samplers?: A review
title_full_unstemmed What is the utility of measuring gaseous HgII dry deposition using Aerohead samplers?: A review
title_sort what is the utility of measuring gaseous hgii dry deposition using aerohead samplers?: a review
publisher HAL CCSD
publishDate 2024
url https://hal.science/hal-04377431
https://doi.org/10.1016/j.scitotenv.2023.167895
geographic Indian
geographic_facet Indian
genre Amsterdam Island
genre_facet Amsterdam Island
op_source ISSN: 0048-9697
EISSN: 1879-1026
Science of the Total Environment
https://hal.science/hal-04377431
Science of the Total Environment, 2024, 907, pp.167895. ⟨10.1016/j.scitotenv.2023.167895⟩
op_relation info:eu-repo/semantics/altIdentifier/doi/10.1016/j.scitotenv.2023.167895
info:eu-repo/semantics/altIdentifier/pmid/37866618
hal-04377431
https://hal.science/hal-04377431
doi:10.1016/j.scitotenv.2023.167895
PUBMED: 37866618
WOS: 001110460600001
op_doi https://doi.org/10.1016/j.scitotenv.2023.167895
container_title Science of The Total Environment
container_volume 907
container_start_page 167895
_version_ 1802639478273081344