Topological Comparisons of Fluvial Reservoir Rock Volumes Using Betti Numbers: Application to CO2 Storage Uncertainty Analysis
International audience To prevent the release of large quantities of CO2 into the atmosphere, carbon capture and storage (CCS) represents a potential means of mitigating the contribution of fossil fuel emissions to global warming and ocean acidification. Fluvial saline aquifers are favourite targete...
Main Authors: | , , , , , , , |
---|---|
Other Authors: | , , , , , , , , , |
Format: | Conference Object |
Language: | English |
Published: |
HAL CCSD
2016
|
Subjects: | |
Online Access: | https://amu.hal.science/hal-01341013 https://doi.org/10.1007/978-3-319-39441-1_10 |
id |
ftinraparis:oai:HAL:hal-01341013v1 |
---|---|
record_format |
openpolar |
institution |
Open Polar |
collection |
Institut National de la Recherche Agronomique: ProdINRA |
op_collection_id |
ftinraparis |
language |
English |
topic |
[INFO]Computer Science [cs] [INFO.INFO-GR]Computer Science [cs]/Graphics [cs.GR] [INFO.INFO-CG]Computer Science [cs]/Computational Geometry [cs.CG] [INFO.INFO-OH]Computer Science [cs]/Other [cs.OH] |
spellingShingle |
[INFO]Computer Science [cs] [INFO.INFO-GR]Computer Science [cs]/Graphics [cs.GR] [INFO.INFO-CG]Computer Science [cs]/Computational Geometry [cs.CG] [INFO.INFO-OH]Computer Science [cs]/Other [cs.OH] Dahrabou, Asmae Viseur, Sophie Gonzalez-Lorenzo, Aldo Rohmer, Jeremy Bac, Alexandra Real, Pedro Mari, Jean-Luc Audigane, Pascal Topological Comparisons of Fluvial Reservoir Rock Volumes Using Betti Numbers: Application to CO2 Storage Uncertainty Analysis |
topic_facet |
[INFO]Computer Science [cs] [INFO.INFO-GR]Computer Science [cs]/Graphics [cs.GR] [INFO.INFO-CG]Computer Science [cs]/Computational Geometry [cs.CG] [INFO.INFO-OH]Computer Science [cs]/Other [cs.OH] |
description |
International audience To prevent the release of large quantities of CO2 into the atmosphere, carbon capture and storage (CCS) represents a potential means of mitigating the contribution of fossil fuel emissions to global warming and ocean acidification. Fluvial saline aquifers are favourite targeted reservoirs for CO2 storage. These reservoirs are very heterogeneous but their heterogeneities were rarely integrated into CO2 reservoir models. Moreover, contrary to petroleum reservoirs, the available dataset is very limited and not supposed to be enriched. This leads to wide uncertainties on reservoir characteristics required for CSS management (injection location, CO2 plume migration, etc.). Stochastic simulations are classical strategies in such under-constrained context. They aim at generating a wide number of models that all fit the available dataset. The generated models serve as support for computing the required reservoir characteristics and their uncertainties. A challenge is to optimize the uncertainty computations by selecting stochastic models that should have a priori very different flow behaviours. Fluid flows depend on the connectivity of reservoir rocks (channel deposits). In this paper, it is proposed to study the variability of the Betti numbers in function of different fluvial architectures. The aim is to quantify the impact of fluvial heterogeneities and their spatial distribution on reservoir rock topology and then on CO2 storage capacities. Representative models of different scenarios of channel stacking and their internal heterogeneities are generated using geostatistical simulation approaches. The Betti numbers are computed on each generated models and statistically analysed to exhibit if fluvial architecture controls reservoir topology. |
author2 |
Université de Neuchâtel = University of Neuchatel (UNINE) Centre Européen de Recherche et d'Enseignement des Géosciences de l'Environnement (CEREGE) Institut de Recherche pour le Développement (IRD)-Institut National de la Recherche Agronomique (INRA)-Aix Marseille Université (AMU)-Collège de France (CdF (institution))-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS) Universidad de Sevilla = University of Seville GMOD-LSIS (GMOD-LSIS) Laboratoire des Sciences de l'Information et des Systèmes (LSIS) Aix Marseille Université (AMU)-Université de Toulon (UTLN)-Arts et Métiers Paristech ENSAM Aix-en-Provence-Centre National de la Recherche Scientifique (CNRS)-Aix Marseille Université (AMU)-Université de Toulon (UTLN)-Arts et Métiers Paristech ENSAM Aix-en-Provence-Centre National de la Recherche Scientifique (CNRS) Aix Marseille Université (AMU) Bureau de Recherches Géologiques et Minières (BRGM) Alexandra Bac and Jean-Luc Mari (Eds.) |
format |
Conference Object |
author |
Dahrabou, Asmae Viseur, Sophie Gonzalez-Lorenzo, Aldo Rohmer, Jeremy Bac, Alexandra Real, Pedro Mari, Jean-Luc Audigane, Pascal |
author_facet |
Dahrabou, Asmae Viseur, Sophie Gonzalez-Lorenzo, Aldo Rohmer, Jeremy Bac, Alexandra Real, Pedro Mari, Jean-Luc Audigane, Pascal |
author_sort |
Dahrabou, Asmae |
title |
Topological Comparisons of Fluvial Reservoir Rock Volumes Using Betti Numbers: Application to CO2 Storage Uncertainty Analysis |
title_short |
Topological Comparisons of Fluvial Reservoir Rock Volumes Using Betti Numbers: Application to CO2 Storage Uncertainty Analysis |
title_full |
Topological Comparisons of Fluvial Reservoir Rock Volumes Using Betti Numbers: Application to CO2 Storage Uncertainty Analysis |
title_fullStr |
Topological Comparisons of Fluvial Reservoir Rock Volumes Using Betti Numbers: Application to CO2 Storage Uncertainty Analysis |
title_full_unstemmed |
Topological Comparisons of Fluvial Reservoir Rock Volumes Using Betti Numbers: Application to CO2 Storage Uncertainty Analysis |
title_sort |
topological comparisons of fluvial reservoir rock volumes using betti numbers: application to co2 storage uncertainty analysis |
publisher |
HAL CCSD |
publishDate |
2016 |
url |
https://amu.hal.science/hal-01341013 https://doi.org/10.1007/978-3-319-39441-1_10 |
op_coverage |
Marseille, France |
genre |
Ocean acidification |
genre_facet |
Ocean acidification |
op_source |
6th International Workshop on Computational Topology in Image Context (CTIC 2016) https://amu.hal.science/hal-01341013 6th International Workshop on Computational Topology in Image Context (CTIC 2016), Jun 2016, Marseille, France. pp.101-112, ⟨10.1007/978-3-319-39441-1_10⟩ |
op_relation |
info:eu-repo/semantics/altIdentifier/doi/10.1007/978-3-319-39441-1_10 hal-01341013 https://amu.hal.science/hal-01341013 doi:10.1007/978-3-319-39441-1_10 |
op_doi |
https://doi.org/10.1007/978-3-319-39441-1_10 |
container_start_page |
101 |
op_container_end_page |
112 |
_version_ |
1802648685273677824 |
spelling |
ftinraparis:oai:HAL:hal-01341013v1 2024-06-23T07:55:54+00:00 Topological Comparisons of Fluvial Reservoir Rock Volumes Using Betti Numbers: Application to CO2 Storage Uncertainty Analysis Dahrabou, Asmae Viseur, Sophie Gonzalez-Lorenzo, Aldo Rohmer, Jeremy Bac, Alexandra Real, Pedro Mari, Jean-Luc Audigane, Pascal Université de Neuchâtel = University of Neuchatel (UNINE) Centre Européen de Recherche et d'Enseignement des Géosciences de l'Environnement (CEREGE) Institut de Recherche pour le Développement (IRD)-Institut National de la Recherche Agronomique (INRA)-Aix Marseille Université (AMU)-Collège de France (CdF (institution))-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS) Universidad de Sevilla = University of Seville GMOD-LSIS (GMOD-LSIS) Laboratoire des Sciences de l'Information et des Systèmes (LSIS) Aix Marseille Université (AMU)-Université de Toulon (UTLN)-Arts et Métiers Paristech ENSAM Aix-en-Provence-Centre National de la Recherche Scientifique (CNRS)-Aix Marseille Université (AMU)-Université de Toulon (UTLN)-Arts et Métiers Paristech ENSAM Aix-en-Provence-Centre National de la Recherche Scientifique (CNRS) Aix Marseille Université (AMU) Bureau de Recherches Géologiques et Minières (BRGM) Alexandra Bac and Jean-Luc Mari (Eds.) Marseille, France 2016-06-15 https://amu.hal.science/hal-01341013 https://doi.org/10.1007/978-3-319-39441-1_10 en eng HAL CCSD Springer info:eu-repo/semantics/altIdentifier/doi/10.1007/978-3-319-39441-1_10 hal-01341013 https://amu.hal.science/hal-01341013 doi:10.1007/978-3-319-39441-1_10 6th International Workshop on Computational Topology in Image Context (CTIC 2016) https://amu.hal.science/hal-01341013 6th International Workshop on Computational Topology in Image Context (CTIC 2016), Jun 2016, Marseille, France. pp.101-112, ⟨10.1007/978-3-319-39441-1_10⟩ [INFO]Computer Science [cs] [INFO.INFO-GR]Computer Science [cs]/Graphics [cs.GR] [INFO.INFO-CG]Computer Science [cs]/Computational Geometry [cs.CG] [INFO.INFO-OH]Computer Science [cs]/Other [cs.OH] info:eu-repo/semantics/conferenceObject Conference papers 2016 ftinraparis https://doi.org/10.1007/978-3-319-39441-1_10 2024-06-11T15:07:16Z International audience To prevent the release of large quantities of CO2 into the atmosphere, carbon capture and storage (CCS) represents a potential means of mitigating the contribution of fossil fuel emissions to global warming and ocean acidification. Fluvial saline aquifers are favourite targeted reservoirs for CO2 storage. These reservoirs are very heterogeneous but their heterogeneities were rarely integrated into CO2 reservoir models. Moreover, contrary to petroleum reservoirs, the available dataset is very limited and not supposed to be enriched. This leads to wide uncertainties on reservoir characteristics required for CSS management (injection location, CO2 plume migration, etc.). Stochastic simulations are classical strategies in such under-constrained context. They aim at generating a wide number of models that all fit the available dataset. The generated models serve as support for computing the required reservoir characteristics and their uncertainties. A challenge is to optimize the uncertainty computations by selecting stochastic models that should have a priori very different flow behaviours. Fluid flows depend on the connectivity of reservoir rocks (channel deposits). In this paper, it is proposed to study the variability of the Betti numbers in function of different fluvial architectures. The aim is to quantify the impact of fluvial heterogeneities and their spatial distribution on reservoir rock topology and then on CO2 storage capacities. Representative models of different scenarios of channel stacking and their internal heterogeneities are generated using geostatistical simulation approaches. The Betti numbers are computed on each generated models and statistically analysed to exhibit if fluvial architecture controls reservoir topology. Conference Object Ocean acidification Institut National de la Recherche Agronomique: ProdINRA 101 112 |