Impact of Orbital Parameters and Greenhouse Gas on the Climate of MIS 7 and MIS 5 Glacial Inceptions

This work explores the impact of orbital parameters and greenhouse gas concentrations on the climate of marine isotope stage (MIS) 7 glacial inception and compares it to that of MIS 5. The authors use a coupled atmosphere-ocean general circulation model to simulate the mean climate state of six time...

Full description

Bibliographic Details
Published in:Revista Latina de Sociología
Main Authors: Colleoni, F., Masina, S., Cherchi, A., Iovino, D.
Other Authors: Colleoni, F.; Ctr Euromediterraneo Cambiamenti Climat, Bologna, Italy, Masina, S.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Bologna, Bologna, Italia, Cherchi, A.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Bologna, Bologna, Italia, Iovino, D.; Ctr Euromediterraneo Cambiamenti Climat, Bologna, Italy, Ctr Euromediterraneo Cambiamenti Climat, Bologna, Italy, Istituto Nazionale di Geofisica e Vulcanologia, Sezione Bologna, Bologna, Italia
Format: Article in Journal/Newspaper
Language:English
Published: American Meteorological Society 2014
Subjects:
Online Access:http://hdl.handle.net/2122/9522
http://journals.ametsoc.org/doi/full/10.1175/JCLI-D-13-00754.1
https://doi.org/10.1175/JCLI-D-13-00754.1
id ftingv:oai:www.earth-prints.org:2122/9522
record_format openpolar
institution Open Polar
collection Earth-Prints (Istituto Nazionale di Geofisica e Vulcanologia)
op_collection_id ftingv
language English
topic Arctic Oscillation
Teleconnections
Greenhouse gases
Glaciation
Paleoclimate
02. Cryosphere::02.03. Ice cores::02.03.05. Paleoclimate
spellingShingle Arctic Oscillation
Teleconnections
Greenhouse gases
Glaciation
Paleoclimate
02. Cryosphere::02.03. Ice cores::02.03.05. Paleoclimate
Colleoni, F.
Masina, S.
Cherchi, A.
Iovino, D.
Impact of Orbital Parameters and Greenhouse Gas on the Climate of MIS 7 and MIS 5 Glacial Inceptions
topic_facet Arctic Oscillation
Teleconnections
Greenhouse gases
Glaciation
Paleoclimate
02. Cryosphere::02.03. Ice cores::02.03.05. Paleoclimate
description This work explores the impact of orbital parameters and greenhouse gas concentrations on the climate of marine isotope stage (MIS) 7 glacial inception and compares it to that of MIS 5. The authors use a coupled atmosphere-ocean general circulation model to simulate the mean climate state of six time slices at 115, 122, 125, 229, 236, and 239 kyr, representative of a climate evolution from interglacial to glacial inception conditions. The simulations are designed to separate the effects of orbital parameters from those of greenhouse gas (GHG). Their results show that, in all the time slices considered, MIS 7 boreal lands mean annual climate is colder than the MIS 5 one. This difference is explained at 70% by the impact of the MIS 7 GHG. While the impact of GHG over Northern Hemisphere is homogeneous, the difference in temperature between MIS 7 and MIS 5 due to orbital parameters differs regionally and is linked with the Arctic Oscillation. The perennial snow cover is larger in all the MIS 7 experiments compared to MIS 5, as a result of MIS 7 orbital parameters, strengthened by GHG. At regional scale, Eurasia exhibits the strongest response to MIS 7 cold climate with a perennial snow area 3 times larger than in MIS 5 experiments. This suggests that MIS 7 glacial inception is more favorable over this area than over North America. Furthermore, at 239 kyr, the perennial snow covers an area equivalent to that of MIS 5 glacial inception (115 kyr). The authors suggest that MIS 7 glacial inception is more extensive than MIS 5 glacial inception over the high latitudes. Italian Ministry of Education, University and Research Ministry for Environment, Land and Sea through the project GEMINA Published 8918-8933 4A. Clima e Oceani JCR Journal open
author2 Colleoni, F.; Ctr Euromediterraneo Cambiamenti Climat, Bologna, Italy
Masina, S.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Bologna, Bologna, Italia
Cherchi, A.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Bologna, Bologna, Italia
Iovino, D.; Ctr Euromediterraneo Cambiamenti Climat, Bologna, Italy
Ctr Euromediterraneo Cambiamenti Climat, Bologna, Italy
Istituto Nazionale di Geofisica e Vulcanologia, Sezione Bologna, Bologna, Italia
format Article in Journal/Newspaper
author Colleoni, F.
Masina, S.
Cherchi, A.
Iovino, D.
author_facet Colleoni, F.
Masina, S.
Cherchi, A.
Iovino, D.
author_sort Colleoni, F.
title Impact of Orbital Parameters and Greenhouse Gas on the Climate of MIS 7 and MIS 5 Glacial Inceptions
title_short Impact of Orbital Parameters and Greenhouse Gas on the Climate of MIS 7 and MIS 5 Glacial Inceptions
title_full Impact of Orbital Parameters and Greenhouse Gas on the Climate of MIS 7 and MIS 5 Glacial Inceptions
title_fullStr Impact of Orbital Parameters and Greenhouse Gas on the Climate of MIS 7 and MIS 5 Glacial Inceptions
title_full_unstemmed Impact of Orbital Parameters and Greenhouse Gas on the Climate of MIS 7 and MIS 5 Glacial Inceptions
title_sort impact of orbital parameters and greenhouse gas on the climate of mis 7 and mis 5 glacial inceptions
publisher American Meteorological Society
publishDate 2014
url http://hdl.handle.net/2122/9522
http://journals.ametsoc.org/doi/full/10.1175/JCLI-D-13-00754.1
https://doi.org/10.1175/JCLI-D-13-00754.1
geographic Arctic
geographic_facet Arctic
genre Arctic
Arctic
genre_facet Arctic
Arctic
op_relation Journal of climate
23/27(2014)
Berger, A., 1978: Long-term variations of daily insolation and quaternary climatic changes. J. Atmos. Sci., 35, 2362–2367, doi:10.1175/1520-0469(1978)035<2362:LTVODI>2.0.CO;2. [Abstract] Bintanja, R., R. S. van de Wal, and J. Oerlemans, 2005: Modelled atmospheric temperatures and global sea levels over the past million years. Nature, 437, 125–128, doi:10.1038/nature03975. [CrossRef] Bonelli, S., S. Charbit, M. Kageyama, M.-N. Woillez, G. Ramstein, C. Dumas, and A. Quiquet, 2009: Investigating the evolution of major Northern Hemisphere ice sheets during the last glacial-interglacial cycle. Climate Past, 5, 329–345, doi:10.5194/cp-5-329-2009. [CrossRef] Calov, R., A. Ganopolsi, V. Petoukhov, M. Claussen, V. Brovkin, and C. Kutbatzki, 2005: Transient simulation of the last glacial inception. Part II: Sensitivity and feedback analysis. Climate Dyn., 24, 563–576, doi:10.1007/s00382-005-0008-5. [CrossRef] Colleoni, F., S. Masina, A. Cherchi, A. Navarra, C. Ritz, V. Peyaud, and B. Otto-Bliesner, 2014: Modeling Northern Hemisphere ice-sheet distribution during MIS 5 and MIS 7 glacial inceptions. Climate Past, 10, 269–291, doi:10.5194/cp-10-269-2014. [CrossRef] Dahl-Jensen, D., and Coauthors, 2013: Eemian interglacial reconstructed from a Greenland folded ice core. Nature, 493, 489–494, doi:10.1038/nature11789. [CrossRef] Dutton, A., E. Bard, F. Antonioli, T. M. Esat, K. Lambeck, and M. T. McCulloch, 2009: Phasing and amplitude of sea-level and climate change during the penultimate interglacial. Nat. Geosci., 2, 355–359, doi:10.1038/ngeo470. [CrossRef] Gent, P. R., and Coauthors, 2011: The Community Climate System Model version 4. J. Climate, 24, 4973–4991, doi:10.1175/2011JCLI4083.1. [Abstract] Groll, N., and M. Widmann, 2006: Sensitivity of temperature teleconnections to orbital changes in AO-GCM simulations. Geophys. Res. Lett., 33, L12705, doi:10.1029/2005GL025578. Groll, N., M. Widmann, J. M. Jones, F. Kaspar, and S. J. Lorenz, 2005: Simulated relationships between regional temperatures and large-scale circulation: 125 kyr BP (Eemian) and the preindustrial period. J. Climate, 18, 4032–4045, doi:10.1175/JCLI3469.1. [Abstract] Haug, G. H., and Coauthors, 2005: North Pacific seasonality and the glaciation of North America 2.7 million years ago. Nature, 433, 821–825, doi:10.1038/nature03332. [CrossRef] Helmke, J. P., H. A. Bauch, and H. Erlenkeuser, 2003: Development of glacial and interglacial conditions in the Nordic Seas between 1.5 and 0.35 Ma. Quat. Sci. Rev., 22, 1717–1728, doi:10.1016/S0277-3791(03)00126-4. [CrossRef] Jansen, J., A. Kuijpers, and S. Troelstra, 1986: A mid-Brunhes climatic event: Long-term changes in global atmosphere and ocean circulation. Science, 232, 619–622, doi:10.1126/science.232.4750.619. [CrossRef] Jochum, M., A. Jahn, S. Peacock, D. A. Bailey, J. Fasullo, J. Kay, S. Levis, and B. Otto-Bliesner, 2012: True to Milankovitch: Glacial inception in the new Community Climate System Model. J. Climate, 25, 2226–2239, doi:10.1175/JCLI-D-11-00044.1. [Abstract] Johnsen, S., and Coauthors, 2001: Oxygen isotope and palaeotemperature records from six Greenland ice-core stations: Camp Century, Dye-3, GRIP, GISP2, Renland and NorthGRIP. J. Quat. Sci., 16, 299–307, doi:10.1002/jqs.622. [CrossRef] Jouzel, J., and Coauthors, 2007: Orbital and millennial Antarctic climate variability over the past 800,000 years. Science, 317, 793–797, doi:10.1126/science.1141038. [CrossRef] Kageyama, M., S. Charbit, C. Ritz, M. Khodri, and G. Ramstein, 2004: Quantifying ice-sheet feedbacks during the last glacial inception. Geophys. Res. Lett.,31, L24203, doi:10.1029/2004GL021339. Kawamura, K., and Coauthors, 2007: Northern Hemisphere forcing of climatic cycles in Antarctica over the past 360,000 years. Nature, 448, 912–916, doi:10.1038/nature06015. [CrossRef] Kubatzki, C., M. Claussen, R. Calov, and A. Ganopolski, 2006: Sensitivity of the last glacial inception to initial and surface conditions. Climate Dyn., 27, 333–344, doi:10.1007/s00382-006-0136-6. [CrossRef] Lang, N., and E. W. Wolff, 2011: Interglacial and glacial variability from the last 800 ka in marine, ice and terrestrial archives. Climate Past, 7, 361–380, doi:10.5194/cp-7-361-2011. [CrossRef] Lisiecki, L., and M. Raymo, 2005: A Pliocene-Pleistocene stack of 57 globally distributed benthic δ18O records. Paleoceanography, 20, PA1003, doi:10.1029/2004PA001071. Lisiecki, L., and M. Raymo, 2007: Pliopleistocene climate evolution: Trends and transitions in glacial cycle dynamics. Quat. Sci. Rev., 26, 56–69, doi:10.1016/j.quascirev.2006.09.005. [CrossRef] Loulergue, L., and Coauthors, 2008: Orbital and millennial-scale features of atmospheric CH4 over the past 800,000 years. Nature, 453, 383–386, doi:10.1038/nature06950. [CrossRef] Luthi, D., and Coauthors, 2008: High-resolution carbon dioxide concentration record 650,000–800,000 years before present. Nature, 453, 379–382, doi:10.1038/nature06949. [CrossRef] Milankovitch, M., 1941: Kanon der Erdbestrahlung und seine Andwendung auf das Eiszeitenproblem. Royal Serbian Academy, 633 pp. Mudelsee, M., and M. E. Raymo, 2005: Slow dynamics of the Northern Hemisphere glaciations. Paleoceanography, 20, PA4022, doi:10.1029/2005PA001153. [CrossRef] Rohling, E., K. Grant, M. Bolshaw, A. Roberts, M. Siddall, C. Hemleben, and M. Kucera, 2009: Antarctic temperature and global sea level closely coupled over the past five glacial cycles. Nat. Geosci., 2, 500–504, doi:10.1038/ngeo557. [CrossRef] Schilt, A., M. Baumgartner, T. Blunier, J. Schwander, R. Spahni, H. Fischer, and T. Stocker, 2010: Glacial-interglacial and millennial scale variations in the atmospheric nitrous oxide concentration during the last 800,000 years. Quat. Sci. Rev., 29, 182–192, doi:10.1016/j.quascirev.2009.03.011. [CrossRef] Shields, C. A., D. A. Bailey, G. Danabasoglu, M. Jochum, J. T. Kiehl, S. Levis, and S. Park, 2012: The low-resolution CCSM4. J. Climate, 25, 3993–4014, doi:10.1175/JCLI-D-11-00260.1. [Abstract] Siddall, M., E. Bard, E. J. Rohling, and C. Hemleben, 2006: Sea-level reversal during termination II. Geology, 34, 817–820, doi:10.1130/G22705.1. [CrossRef] Thompson, D. W., and J. M. Wallace, 1998: The Arctic Oscillation signature in the wintertime geopotential height and temperature fields. Geophys. Res. Lett., 25, 1297–1300, doi:10.1029/98GL00950. [CrossRef] Tzedakis, P., J. Channell, D. Hodell, H. Kleiven, and L. Skinner, 2012: Determining the natural length of the current interglacial. Nat. Geosci., 5, 138–141, doi:10.1038/ngeo1358. [CrossRef] Vettoretti, G., and W. R. Peltier, 2003: Post-Eemian glacial inception. Part I: The impact of summer seasonal temperature bias. J. Climate, 16, 889–911, doi:10.1175/1520-0442(2003)016<0889:PEGIPI>2.0.CO;2. [Abstract] Wang, Z., and L. Mysak, 2002: Simulation of the last glacial inception and rapid ice sheet growth in the McGill paleoclimate model. Geophys. Res. Lett., 29, 2102, doi:10.1029/2002GL015120. [CrossRef] Yeager, S. G., C. A. Shields, W. G. Large, and J. J. Hack, 2006: The low-resolution CCSM3. J. Climate, 19, 2545–2566, doi:10.1175/JCLI3744.1. [Abstract] Yin, Q., and A. Berger, 2012: Individual contribution of insolation and CO2 to the interglacial climates of the past 800,000 years. Climate Dyn., 38, 709–724, doi:10.1007/s00382-011-1013-5. [CrossRef]
0894-8755
1520-0442
http://hdl.handle.net/2122/9522
http://journals.ametsoc.org/doi/full/10.1175/JCLI-D-13-00754.1
doi:10.1175/JCLI-D-13-00754.1
op_rights open
op_doi https://doi.org/10.1175/JCLI-D-13-00754.1
https://doi.org/10.1175/1520-0469(1978)035<2362:LTVODI>2.0.CO;2
container_title Revista Latina de Sociología
container_volume 5
container_issue 1
container_start_page 1
op_container_end_page 32
_version_ 1766302609439719424
spelling ftingv:oai:www.earth-prints.org:2122/9522 2023-05-15T14:28:27+02:00 Impact of Orbital Parameters and Greenhouse Gas on the Climate of MIS 7 and MIS 5 Glacial Inceptions Colleoni, F. Masina, S. Cherchi, A. Iovino, D. Colleoni, F.; Ctr Euromediterraneo Cambiamenti Climat, Bologna, Italy Masina, S.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Bologna, Bologna, Italia Cherchi, A.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Bologna, Bologna, Italia Iovino, D.; Ctr Euromediterraneo Cambiamenti Climat, Bologna, Italy Ctr Euromediterraneo Cambiamenti Climat, Bologna, Italy Istituto Nazionale di Geofisica e Vulcanologia, Sezione Bologna, Bologna, Italia 2014-12 http://hdl.handle.net/2122/9522 http://journals.ametsoc.org/doi/full/10.1175/JCLI-D-13-00754.1 https://doi.org/10.1175/JCLI-D-13-00754.1 en eng American Meteorological Society Journal of climate 23/27(2014) Berger, A., 1978: Long-term variations of daily insolation and quaternary climatic changes. J. Atmos. Sci., 35, 2362–2367, doi:10.1175/1520-0469(1978)035<2362:LTVODI>2.0.CO;2. [Abstract] Bintanja, R., R. S. van de Wal, and J. Oerlemans, 2005: Modelled atmospheric temperatures and global sea levels over the past million years. Nature, 437, 125–128, doi:10.1038/nature03975. [CrossRef] Bonelli, S., S. Charbit, M. Kageyama, M.-N. Woillez, G. Ramstein, C. Dumas, and A. Quiquet, 2009: Investigating the evolution of major Northern Hemisphere ice sheets during the last glacial-interglacial cycle. Climate Past, 5, 329–345, doi:10.5194/cp-5-329-2009. [CrossRef] Calov, R., A. Ganopolsi, V. Petoukhov, M. Claussen, V. Brovkin, and C. Kutbatzki, 2005: Transient simulation of the last glacial inception. Part II: Sensitivity and feedback analysis. Climate Dyn., 24, 563–576, doi:10.1007/s00382-005-0008-5. [CrossRef] Colleoni, F., S. Masina, A. Cherchi, A. Navarra, C. Ritz, V. Peyaud, and B. Otto-Bliesner, 2014: Modeling Northern Hemisphere ice-sheet distribution during MIS 5 and MIS 7 glacial inceptions. Climate Past, 10, 269–291, doi:10.5194/cp-10-269-2014. [CrossRef] Dahl-Jensen, D., and Coauthors, 2013: Eemian interglacial reconstructed from a Greenland folded ice core. Nature, 493, 489–494, doi:10.1038/nature11789. [CrossRef] Dutton, A., E. Bard, F. Antonioli, T. M. Esat, K. Lambeck, and M. T. McCulloch, 2009: Phasing and amplitude of sea-level and climate change during the penultimate interglacial. Nat. Geosci., 2, 355–359, doi:10.1038/ngeo470. [CrossRef] Gent, P. R., and Coauthors, 2011: The Community Climate System Model version 4. J. Climate, 24, 4973–4991, doi:10.1175/2011JCLI4083.1. [Abstract] Groll, N., and M. Widmann, 2006: Sensitivity of temperature teleconnections to orbital changes in AO-GCM simulations. Geophys. Res. Lett., 33, L12705, doi:10.1029/2005GL025578. Groll, N., M. Widmann, J. M. Jones, F. Kaspar, and S. J. Lorenz, 2005: Simulated relationships between regional temperatures and large-scale circulation: 125 kyr BP (Eemian) and the preindustrial period. J. Climate, 18, 4032–4045, doi:10.1175/JCLI3469.1. [Abstract] Haug, G. H., and Coauthors, 2005: North Pacific seasonality and the glaciation of North America 2.7 million years ago. Nature, 433, 821–825, doi:10.1038/nature03332. [CrossRef] Helmke, J. P., H. A. Bauch, and H. Erlenkeuser, 2003: Development of glacial and interglacial conditions in the Nordic Seas between 1.5 and 0.35 Ma. Quat. Sci. Rev., 22, 1717–1728, doi:10.1016/S0277-3791(03)00126-4. [CrossRef] Jansen, J., A. Kuijpers, and S. Troelstra, 1986: A mid-Brunhes climatic event: Long-term changes in global atmosphere and ocean circulation. Science, 232, 619–622, doi:10.1126/science.232.4750.619. [CrossRef] Jochum, M., A. Jahn, S. Peacock, D. A. Bailey, J. Fasullo, J. Kay, S. Levis, and B. Otto-Bliesner, 2012: True to Milankovitch: Glacial inception in the new Community Climate System Model. J. Climate, 25, 2226–2239, doi:10.1175/JCLI-D-11-00044.1. [Abstract] Johnsen, S., and Coauthors, 2001: Oxygen isotope and palaeotemperature records from six Greenland ice-core stations: Camp Century, Dye-3, GRIP, GISP2, Renland and NorthGRIP. J. Quat. Sci., 16, 299–307, doi:10.1002/jqs.622. [CrossRef] Jouzel, J., and Coauthors, 2007: Orbital and millennial Antarctic climate variability over the past 800,000 years. Science, 317, 793–797, doi:10.1126/science.1141038. [CrossRef] Kageyama, M., S. Charbit, C. Ritz, M. Khodri, and G. Ramstein, 2004: Quantifying ice-sheet feedbacks during the last glacial inception. Geophys. Res. Lett.,31, L24203, doi:10.1029/2004GL021339. Kawamura, K., and Coauthors, 2007: Northern Hemisphere forcing of climatic cycles in Antarctica over the past 360,000 years. Nature, 448, 912–916, doi:10.1038/nature06015. [CrossRef] Kubatzki, C., M. Claussen, R. Calov, and A. Ganopolski, 2006: Sensitivity of the last glacial inception to initial and surface conditions. Climate Dyn., 27, 333–344, doi:10.1007/s00382-006-0136-6. [CrossRef] Lang, N., and E. W. Wolff, 2011: Interglacial and glacial variability from the last 800 ka in marine, ice and terrestrial archives. Climate Past, 7, 361–380, doi:10.5194/cp-7-361-2011. [CrossRef] Lisiecki, L., and M. Raymo, 2005: A Pliocene-Pleistocene stack of 57 globally distributed benthic δ18O records. Paleoceanography, 20, PA1003, doi:10.1029/2004PA001071. Lisiecki, L., and M. Raymo, 2007: Pliopleistocene climate evolution: Trends and transitions in glacial cycle dynamics. Quat. Sci. Rev., 26, 56–69, doi:10.1016/j.quascirev.2006.09.005. [CrossRef] Loulergue, L., and Coauthors, 2008: Orbital and millennial-scale features of atmospheric CH4 over the past 800,000 years. Nature, 453, 383–386, doi:10.1038/nature06950. [CrossRef] Luthi, D., and Coauthors, 2008: High-resolution carbon dioxide concentration record 650,000–800,000 years before present. Nature, 453, 379–382, doi:10.1038/nature06949. [CrossRef] Milankovitch, M., 1941: Kanon der Erdbestrahlung und seine Andwendung auf das Eiszeitenproblem. Royal Serbian Academy, 633 pp. Mudelsee, M., and M. E. Raymo, 2005: Slow dynamics of the Northern Hemisphere glaciations. Paleoceanography, 20, PA4022, doi:10.1029/2005PA001153. [CrossRef] Rohling, E., K. Grant, M. Bolshaw, A. Roberts, M. Siddall, C. Hemleben, and M. Kucera, 2009: Antarctic temperature and global sea level closely coupled over the past five glacial cycles. Nat. Geosci., 2, 500–504, doi:10.1038/ngeo557. [CrossRef] Schilt, A., M. Baumgartner, T. Blunier, J. Schwander, R. Spahni, H. Fischer, and T. Stocker, 2010: Glacial-interglacial and millennial scale variations in the atmospheric nitrous oxide concentration during the last 800,000 years. Quat. Sci. Rev., 29, 182–192, doi:10.1016/j.quascirev.2009.03.011. [CrossRef] Shields, C. A., D. A. Bailey, G. Danabasoglu, M. Jochum, J. T. Kiehl, S. Levis, and S. Park, 2012: The low-resolution CCSM4. J. Climate, 25, 3993–4014, doi:10.1175/JCLI-D-11-00260.1. [Abstract] Siddall, M., E. Bard, E. J. Rohling, and C. Hemleben, 2006: Sea-level reversal during termination II. Geology, 34, 817–820, doi:10.1130/G22705.1. [CrossRef] Thompson, D. W., and J. M. Wallace, 1998: The Arctic Oscillation signature in the wintertime geopotential height and temperature fields. Geophys. Res. Lett., 25, 1297–1300, doi:10.1029/98GL00950. [CrossRef] Tzedakis, P., J. Channell, D. Hodell, H. Kleiven, and L. Skinner, 2012: Determining the natural length of the current interglacial. Nat. Geosci., 5, 138–141, doi:10.1038/ngeo1358. [CrossRef] Vettoretti, G., and W. R. Peltier, 2003: Post-Eemian glacial inception. Part I: The impact of summer seasonal temperature bias. J. Climate, 16, 889–911, doi:10.1175/1520-0442(2003)016<0889:PEGIPI>2.0.CO;2. [Abstract] Wang, Z., and L. Mysak, 2002: Simulation of the last glacial inception and rapid ice sheet growth in the McGill paleoclimate model. Geophys. Res. Lett., 29, 2102, doi:10.1029/2002GL015120. [CrossRef] Yeager, S. G., C. A. Shields, W. G. Large, and J. J. Hack, 2006: The low-resolution CCSM3. J. Climate, 19, 2545–2566, doi:10.1175/JCLI3744.1. [Abstract] Yin, Q., and A. Berger, 2012: Individual contribution of insolation and CO2 to the interglacial climates of the past 800,000 years. Climate Dyn., 38, 709–724, doi:10.1007/s00382-011-1013-5. [CrossRef] 0894-8755 1520-0442 http://hdl.handle.net/2122/9522 http://journals.ametsoc.org/doi/full/10.1175/JCLI-D-13-00754.1 doi:10.1175/JCLI-D-13-00754.1 open Arctic Oscillation Teleconnections Greenhouse gases Glaciation Paleoclimate 02. Cryosphere::02.03. Ice cores::02.03.05. Paleoclimate article 2014 ftingv https://doi.org/10.1175/JCLI-D-13-00754.1 https://doi.org/10.1175/1520-0469(1978)035<2362:LTVODI>2.0.CO;2 2022-07-29T06:06:46Z This work explores the impact of orbital parameters and greenhouse gas concentrations on the climate of marine isotope stage (MIS) 7 glacial inception and compares it to that of MIS 5. The authors use a coupled atmosphere-ocean general circulation model to simulate the mean climate state of six time slices at 115, 122, 125, 229, 236, and 239 kyr, representative of a climate evolution from interglacial to glacial inception conditions. The simulations are designed to separate the effects of orbital parameters from those of greenhouse gas (GHG). Their results show that, in all the time slices considered, MIS 7 boreal lands mean annual climate is colder than the MIS 5 one. This difference is explained at 70% by the impact of the MIS 7 GHG. While the impact of GHG over Northern Hemisphere is homogeneous, the difference in temperature between MIS 7 and MIS 5 due to orbital parameters differs regionally and is linked with the Arctic Oscillation. The perennial snow cover is larger in all the MIS 7 experiments compared to MIS 5, as a result of MIS 7 orbital parameters, strengthened by GHG. At regional scale, Eurasia exhibits the strongest response to MIS 7 cold climate with a perennial snow area 3 times larger than in MIS 5 experiments. This suggests that MIS 7 glacial inception is more favorable over this area than over North America. Furthermore, at 239 kyr, the perennial snow covers an area equivalent to that of MIS 5 glacial inception (115 kyr). The authors suggest that MIS 7 glacial inception is more extensive than MIS 5 glacial inception over the high latitudes. Italian Ministry of Education, University and Research Ministry for Environment, Land and Sea through the project GEMINA Published 8918-8933 4A. Clima e Oceani JCR Journal open Article in Journal/Newspaper Arctic Arctic Earth-Prints (Istituto Nazionale di Geofisica e Vulcanologia) Arctic Revista Latina de Sociología 5 1 1 32