Electromagnetic ice absorption rate at Dome C, Antarctica

Radio-echo sounding (RES) is a radar technique widely employed in Antarctica and Greenland to define bedrock topography but, over the last decade, it has also played an important role in subglacial lake exploration and hydrogeological studies at the bedrock/ice interface. In recent studies, bedrock...

Full description

Bibliographic Details
Published in:Journal of Glaciology
Main Authors: Zirizzotti, A., Cafarella, L., Urbini, S., Baskaradas, J. A.
Other Authors: Zirizzotti, A.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Roma2, Roma, Italia, Cafarella, L.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Roma2, Roma, Italia, Urbini, S.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Roma2, Roma, Italia, Baskaradas, J. A.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Roma2, Roma, Italia, Istituto Nazionale di Geofisica e Vulcanologia, Sezione Roma2, Roma, Italia
Format: Article in Journal/Newspaper
Language:English
Published: 2014
Subjects:
Online Access:http://hdl.handle.net/2122/9099
https://doi.org/10.3189/2014JoG13J208
id ftingv:oai:www.earth-prints.org:2122/9099
record_format openpolar
institution Open Polar
collection Earth-Prints (Istituto Nazionale di Geofisica e Vulcanologia)
op_collection_id ftingv
language English
topic Antarctic glaciology
ice physics
radio-echo sounding
subglacial lakes
02. Cryosphere::02.02. Glaciers::02.02.10. Instruments and techniques
spellingShingle Antarctic glaciology
ice physics
radio-echo sounding
subglacial lakes
02. Cryosphere::02.02. Glaciers::02.02.10. Instruments and techniques
Zirizzotti, A.
Cafarella, L.
Urbini, S.
Baskaradas, J. A.
Electromagnetic ice absorption rate at Dome C, Antarctica
topic_facet Antarctic glaciology
ice physics
radio-echo sounding
subglacial lakes
02. Cryosphere::02.02. Glaciers::02.02.10. Instruments and techniques
description Radio-echo sounding (RES) is a radar technique widely employed in Antarctica and Greenland to define bedrock topography but, over the last decade, it has also played an important role in subglacial lake exploration and hydrogeological studies at the bedrock/ice interface. In recent studies, bedrock characterization has been improved through analysis of radar power echoes to evaluate the electromagnetic (EM) properties of the interface and allow the distinction between wet and dry interfaces. The RES received signal power depends on ice absorption and bedrock reflectivity, which is closely linked to the specific physical condition of the bedrock. In this paper, an evaluation of EM ice absorption was conducted starting from RES measurements collected over subglacial lakes in Antarctica. The idea was to calculate ice absorption starting from the radar equation in the case of subglacial lakes, where the EM reflectivity value is considered a known constant. These values were compared with those obtained from analysis of ice-core dielectric profiles from EPICA ice-core drilling data. Our analysis reveals that the ice absorption rate calculated from RES measurements has an average value of 7.2 dBkm–1, and it appears constant, independent of the subglacial lake depth in different zones of the Dome C area. Published 849-854 7A. Geofisica di esplorazione JCR Journal restricted
author2 Zirizzotti, A.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Roma2, Roma, Italia
Cafarella, L.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Roma2, Roma, Italia
Urbini, S.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Roma2, Roma, Italia
Baskaradas, J. A.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Roma2, Roma, Italia
Istituto Nazionale di Geofisica e Vulcanologia, Sezione Roma2, Roma, Italia
format Article in Journal/Newspaper
author Zirizzotti, A.
Cafarella, L.
Urbini, S.
Baskaradas, J. A.
author_facet Zirizzotti, A.
Cafarella, L.
Urbini, S.
Baskaradas, J. A.
author_sort Zirizzotti, A.
title Electromagnetic ice absorption rate at Dome C, Antarctica
title_short Electromagnetic ice absorption rate at Dome C, Antarctica
title_full Electromagnetic ice absorption rate at Dome C, Antarctica
title_fullStr Electromagnetic ice absorption rate at Dome C, Antarctica
title_full_unstemmed Electromagnetic ice absorption rate at Dome C, Antarctica
title_sort electromagnetic ice absorption rate at dome c, antarctica
publishDate 2014
url http://hdl.handle.net/2122/9099
https://doi.org/10.3189/2014JoG13J208
geographic Antarctic
Greenland
geographic_facet Antarctic
Greenland
genre Antarc*
Antarctic
Antarctica
EPICA
Greenland
ice core
Journal of Glaciology
genre_facet Antarc*
Antarctic
Antarctica
EPICA
Greenland
ice core
Journal of Glaciology
op_relation Journal of Glaciology
223/60 (2014)
Bell RE, Studinger M, Shuman CA, Fahnestock MA and Joughin I (2007) Large subglacial lakes in East Antarctica at the onset of fast-flowing ice streams. Nature, 445(7130), 904–907 (doi:10.1038/nature05554) Bianchi C, Forieri A and Tabacco IE (2004) Electromagnetic reflecting properties of sub-ice surfaces. Ann. Glaciol., 39, 9– 12 (doi:10.3189/172756404781813998) Bogorodsky VV, Bentley CR and Gudmandsen PE (1985) Radioglaciology. D. Reidel, Dordrecht Cafarella L, Urbini S, Bianchi C, Zirizzotti A, Tabacco IE and Forieri A (2006) Five subglacial lakes and one of Antarctica’s thickest ice covers newly determined by radio echo sounding over the Vostok–Dome C region. Polar Res., 25(1), 69–73 (doi:10.1111/ j.1751–8369.2006.tb00151.x) Carter SP, Blankenship DD, Peters MF, Young DA, Holt JW and Morse DL (2007) Radar-based subglacial lake classification in Antarctica. Geochem. Geophys. Geosyst., 8(3), Q03016 (doi:10.1029/2006GC001408) Carter SP, Blankenship DD, Young DA and Holt JW (2009) Using radar-sounding data to identify the distribution and sources of subglacial water: application to Dome C, East Antarctica. J . Glaciol., 55(194), 1025–1040 (doi:10.3189/ 002214309790794931) Corr H, Moore JC and Nicholls KW (1993) Radar absorption due to impurities in Antarctic ice. Geophys. Res. Lett., 20(11), 1071– 1074 (doi:10.1029/93GL01395) Daniels (1996) [[AUTHOR: please provide full reference]] Eisen O, Wilhelms F, Steinhage D and Schwander J (2006) Improved method to determine radio-echo sounding reflector depths from ice-core profiles of permittivity and conductivity. J. Glaciol., 52 (177), 299–310 (doi:10.3189/172756506781828674) EPICA Community Members (2004) Eight glacial cycles from an Antarctic ice core. Nature, 429(6992), 623–628 (doi:10.1038/ nature02599) Fujita S, Matsuoka T, Ishida T, Matsuoka K and Mae S (2000) A summary of the complex dielectric permittivity of ice in the megahertz range and its applications for radar sounding of polar ice sheets. In Hondoh T ed. Physics of ice core records. Hokkaido University Press, Sapporo, 185–212 Fujita S and 7 others (2012) Radar diagnosis of the subglacial conditions in Dronning Maud Land, East Antarctica. Cryosphere, 6(5), 1203–1219 (doi:10.5194/tc-6-1203-2012) Istituto Nazionale di Geofisica e Vulcanologia (INGV) (2014) Italian radio echo sounding data in Antarctica [IRES GIS database] http://labtel2.rm.ingv.it/antarctica/ [[AUTHOR: Please supply exact date]] Jacobel RW, Lapo KE, Stamp JR, Youngblood BW, Welch BC and Bamber JL (2010) A comparison of basal reflectivity and ice velocity in East Antarctica. Cryosphere, 4(4), 447–452 (doi:10.5194/tc-4-447-2010) Kapitsa AP, Ridley JK, Robin GdeQ, Siegert MJ and Zotikov I (1996) A large deep freshwater lake beneath the ice of central East Antarctica. Nature, 381(6584), 684–686 (doi:10.1038/ 381684a0) Kulessa B (2007) A critical review of the low-frequency electrical properties of ice sheets and glaciers. J. Environ. Eng. Geophys., 12(1), 23–36 (doi:10.2113/JEEG12.1.23) 3B2 v8.07j/W 20th August 2014 Article ref 13J208 Typeset by Sukie Proof no 1 Zirizzotti and others: Electromagnetic ice absorption rate at Dome C 5 MacGregor JA, Winebrenner DP, Conway H, Matsuoka K, Mayewski PA and Clow GD (2007) Modeling englacial radar attenuation at Siple Dome, West Antarctica, using ice chemistry and temperature data. J. Geophys. Res., 112(F3), F03008 (doi:10.1029/2006JF000717) MacGregor JA, Matsuoka K, Waddington ED, Winebrenner DP and Pattyn F (2012) Spatial variation of englacial radar attenuation: modeling approach and application to the Vostok flowline. J. Geophys. Res., 117(F3), F03022 (doi:10.1029/2011JF002327) Matsuoka K (2011) Pitfalls in radar diagnosis of ice-sheet bed conditions: lessons from englacial attenuation models. Geophys. Res. Lett., 38(5), L05505 (doi:10.1029/2010GL046205) Matsuoka K, MacGregor JA and Pattyn F (2012) Predicting radar attenuation within the Antarctic ice sheet. Earth Planet. Sci. Lett., 359–360, 173–183 (doi:10.1016/j.epsl.2012.10.018) Ma¨tzler C and Wegmu¨ ller U (1987) Dielectric properties of freshwater ice at microwave frequencies. J. Appl. Phys., 20 (12), 1623–1630 (doi:10.1088/0022-3727/20/12/013) Oswald GKA and Gogineni SP (2008) Recovery of subglacial water extent from Greenland radar survey data. J. Glaciol., 54(184), 94–106 (doi:10.3189/002214308784409107) Paden J, Allen CT, Gogineni S, Jezek KC, Dahl-Jensen D and Larsen LB (2005) Wideband measurements of ice sheet attenuation and basal scattering. IEEE Geosci. Remote Sens. Lett., 2(2), 164–168 (doi:10.1109/LGRS.2004.842474) Paden J, Akins T, Dunson D, Allen C and Gogineni S (2010) Icesheet bed 3-D tomography. J. Glaciol., 56(195), 3–11 (doi:10.3189/002214310791190811) Peters ME, Blankenship DD and Morse DL (2005) Analysis techniques for coherent airborne radar sounding: application to West Antarctic ice streams. J. Geophys. Res., 110(B6), B06303 (doi:10.1029/2004JB003222) Plewes LA and Hubbard B (2001) A review of the use of radio-echo sounding in glaciology. Progr. Phys. Geogr., 25(2), 203–236 (doi:10.1177/030913330102500203) Re´my F, Testut L, Legre´sy B, Forieri A, Bianchi C and Tabacco IE (2003) Lakes and subglacial hydrological networks around Dome C, East Antarctica. Ann. Glaciol., 37, 252–256 (doi:10.3189/172756403781815799) Skolnik MI (1990) Radar handbook, 2nd edn. McGraw-Hill, New York Stauffer B, Flu¨ckiger J, Wolff EW and Barnes PRF (2004) The EPICA deep ice cores: first results and perspectives. Ann. Glaciol., 39, 93–100 (doi:10.3189/172756404781814500) Tabacco E, Cianfarra P, Forieri A, Salvini F and Zirizzotti A (2006) Physiography and tectonic setting of the subglacial lake district between Vostok and Belgica subglacial highlands (Antarctica). Geophys. J. Int., 165(3), 1029–1040 (doi:10.1111/j.1365- 246X.2006.02954.x) Ulaby FT, Moore RK and Fung AK (1981) Microwave remote sensing, active and passive. Vol. 1. Fundamentals and radiometry. Addison-Wesley, Reading, MA Wingham DJ, Siegert MJ, Shepherd A and Muir AS (2006) Rapid discharge connects Antarctic subglacial lakes. Nature, 440 (7087), 1033–1036 (doi:10.1038/nature04660) Wolff E, Barnes P and Mulvaney R (2004) EPICA Dome C Core EDC99 dielectric profiling data. (IGBP PAGES/World Data Center for Paleoclimatology Data Contribution Series 2004- 037) National Oceanic and Atmospheric Administration (NOAA)/National Geophysical Data Center (NGDC) Paleoclimatology Program, Boulder, CO ftp://ftp.ncdc.noaa.gov/pub/ data/paleo/icecore/antarctica/epica_domec/edc99_dep.txt Zirizzotti A, Baskarades JA, Bianchi C, Sciacca U, Tabacco IE and Zuccheretti E (2008) Glacio RADAR system and results. In Proceedings of IEEE Radar Conference (RADAR ’08), 26–30 May 2008, Rome, Italy. Institute of Electrical and Electronics Engineers, Piscataway, NJ, 1–3 (doi:10.1109/RADAR. 2008.4720993) Zirizzotti and 6 others (2010) Dry–wet bedrock interface detection by radio echo sounding measurements. IEEE Trans. Geosci. Remote Sens., 48(5), 2343–2348 (doi:10.1109/TGRS. S009.2038900) Zirizzotti A, Cafarella L and Urbini S (2012) Ice and bedrock characteristics underneath Dome C (Antarctica) from radio echo sounding data analysis. IEEE Trans. Geosci. Remote Sens., 50(1), 37–43 (doi:10.1109/TGRS.2011.2160551)
0022-1430
1727-5652
http://hdl.handle.net/2122/9099
doi:10.3189/2014JoG13J208
op_rights restricted
op_doi https://doi.org/10.3189/2014JoG13J208
https://doi.org/10.1038/nature05554
container_title Journal of Glaciology
container_volume 60
container_issue 223
container_start_page 849
op_container_end_page 854
_version_ 1766271560791883776
spelling ftingv:oai:www.earth-prints.org:2122/9099 2023-05-15T14:01:37+02:00 Electromagnetic ice absorption rate at Dome C, Antarctica Zirizzotti, A. Cafarella, L. Urbini, S. Baskaradas, J. A. Zirizzotti, A.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Roma2, Roma, Italia Cafarella, L.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Roma2, Roma, Italia Urbini, S.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Roma2, Roma, Italia Baskaradas, J. A.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Roma2, Roma, Italia Istituto Nazionale di Geofisica e Vulcanologia, Sezione Roma2, Roma, Italia 2014-08-20 http://hdl.handle.net/2122/9099 https://doi.org/10.3189/2014JoG13J208 en eng Journal of Glaciology 223/60 (2014) Bell RE, Studinger M, Shuman CA, Fahnestock MA and Joughin I (2007) Large subglacial lakes in East Antarctica at the onset of fast-flowing ice streams. Nature, 445(7130), 904–907 (doi:10.1038/nature05554) Bianchi C, Forieri A and Tabacco IE (2004) Electromagnetic reflecting properties of sub-ice surfaces. Ann. Glaciol., 39, 9– 12 (doi:10.3189/172756404781813998) Bogorodsky VV, Bentley CR and Gudmandsen PE (1985) Radioglaciology. D. Reidel, Dordrecht Cafarella L, Urbini S, Bianchi C, Zirizzotti A, Tabacco IE and Forieri A (2006) Five subglacial lakes and one of Antarctica’s thickest ice covers newly determined by radio echo sounding over the Vostok–Dome C region. Polar Res., 25(1), 69–73 (doi:10.1111/ j.1751–8369.2006.tb00151.x) Carter SP, Blankenship DD, Peters MF, Young DA, Holt JW and Morse DL (2007) Radar-based subglacial lake classification in Antarctica. Geochem. Geophys. Geosyst., 8(3), Q03016 (doi:10.1029/2006GC001408) Carter SP, Blankenship DD, Young DA and Holt JW (2009) Using radar-sounding data to identify the distribution and sources of subglacial water: application to Dome C, East Antarctica. J . Glaciol., 55(194), 1025–1040 (doi:10.3189/ 002214309790794931) Corr H, Moore JC and Nicholls KW (1993) Radar absorption due to impurities in Antarctic ice. Geophys. Res. Lett., 20(11), 1071– 1074 (doi:10.1029/93GL01395) Daniels (1996) [[AUTHOR: please provide full reference]] Eisen O, Wilhelms F, Steinhage D and Schwander J (2006) Improved method to determine radio-echo sounding reflector depths from ice-core profiles of permittivity and conductivity. J. Glaciol., 52 (177), 299–310 (doi:10.3189/172756506781828674) EPICA Community Members (2004) Eight glacial cycles from an Antarctic ice core. Nature, 429(6992), 623–628 (doi:10.1038/ nature02599) Fujita S, Matsuoka T, Ishida T, Matsuoka K and Mae S (2000) A summary of the complex dielectric permittivity of ice in the megahertz range and its applications for radar sounding of polar ice sheets. In Hondoh T ed. Physics of ice core records. Hokkaido University Press, Sapporo, 185–212 Fujita S and 7 others (2012) Radar diagnosis of the subglacial conditions in Dronning Maud Land, East Antarctica. Cryosphere, 6(5), 1203–1219 (doi:10.5194/tc-6-1203-2012) Istituto Nazionale di Geofisica e Vulcanologia (INGV) (2014) Italian radio echo sounding data in Antarctica [IRES GIS database] http://labtel2.rm.ingv.it/antarctica/ [[AUTHOR: Please supply exact date]] Jacobel RW, Lapo KE, Stamp JR, Youngblood BW, Welch BC and Bamber JL (2010) A comparison of basal reflectivity and ice velocity in East Antarctica. Cryosphere, 4(4), 447–452 (doi:10.5194/tc-4-447-2010) Kapitsa AP, Ridley JK, Robin GdeQ, Siegert MJ and Zotikov I (1996) A large deep freshwater lake beneath the ice of central East Antarctica. Nature, 381(6584), 684–686 (doi:10.1038/ 381684a0) Kulessa B (2007) A critical review of the low-frequency electrical properties of ice sheets and glaciers. J. Environ. Eng. Geophys., 12(1), 23–36 (doi:10.2113/JEEG12.1.23) 3B2 v8.07j/W 20th August 2014 Article ref 13J208 Typeset by Sukie Proof no 1 Zirizzotti and others: Electromagnetic ice absorption rate at Dome C 5 MacGregor JA, Winebrenner DP, Conway H, Matsuoka K, Mayewski PA and Clow GD (2007) Modeling englacial radar attenuation at Siple Dome, West Antarctica, using ice chemistry and temperature data. J. Geophys. Res., 112(F3), F03008 (doi:10.1029/2006JF000717) MacGregor JA, Matsuoka K, Waddington ED, Winebrenner DP and Pattyn F (2012) Spatial variation of englacial radar attenuation: modeling approach and application to the Vostok flowline. J. Geophys. Res., 117(F3), F03022 (doi:10.1029/2011JF002327) Matsuoka K (2011) Pitfalls in radar diagnosis of ice-sheet bed conditions: lessons from englacial attenuation models. Geophys. Res. Lett., 38(5), L05505 (doi:10.1029/2010GL046205) Matsuoka K, MacGregor JA and Pattyn F (2012) Predicting radar attenuation within the Antarctic ice sheet. Earth Planet. Sci. Lett., 359–360, 173–183 (doi:10.1016/j.epsl.2012.10.018) Ma¨tzler C and Wegmu¨ ller U (1987) Dielectric properties of freshwater ice at microwave frequencies. J. Appl. Phys., 20 (12), 1623–1630 (doi:10.1088/0022-3727/20/12/013) Oswald GKA and Gogineni SP (2008) Recovery of subglacial water extent from Greenland radar survey data. J. Glaciol., 54(184), 94–106 (doi:10.3189/002214308784409107) Paden J, Allen CT, Gogineni S, Jezek KC, Dahl-Jensen D and Larsen LB (2005) Wideband measurements of ice sheet attenuation and basal scattering. IEEE Geosci. Remote Sens. Lett., 2(2), 164–168 (doi:10.1109/LGRS.2004.842474) Paden J, Akins T, Dunson D, Allen C and Gogineni S (2010) Icesheet bed 3-D tomography. J. Glaciol., 56(195), 3–11 (doi:10.3189/002214310791190811) Peters ME, Blankenship DD and Morse DL (2005) Analysis techniques for coherent airborne radar sounding: application to West Antarctic ice streams. J. Geophys. Res., 110(B6), B06303 (doi:10.1029/2004JB003222) Plewes LA and Hubbard B (2001) A review of the use of radio-echo sounding in glaciology. Progr. Phys. Geogr., 25(2), 203–236 (doi:10.1177/030913330102500203) Re´my F, Testut L, Legre´sy B, Forieri A, Bianchi C and Tabacco IE (2003) Lakes and subglacial hydrological networks around Dome C, East Antarctica. Ann. Glaciol., 37, 252–256 (doi:10.3189/172756403781815799) Skolnik MI (1990) Radar handbook, 2nd edn. McGraw-Hill, New York Stauffer B, Flu¨ckiger J, Wolff EW and Barnes PRF (2004) The EPICA deep ice cores: first results and perspectives. Ann. Glaciol., 39, 93–100 (doi:10.3189/172756404781814500) Tabacco E, Cianfarra P, Forieri A, Salvini F and Zirizzotti A (2006) Physiography and tectonic setting of the subglacial lake district between Vostok and Belgica subglacial highlands (Antarctica). Geophys. J. Int., 165(3), 1029–1040 (doi:10.1111/j.1365- 246X.2006.02954.x) Ulaby FT, Moore RK and Fung AK (1981) Microwave remote sensing, active and passive. Vol. 1. Fundamentals and radiometry. Addison-Wesley, Reading, MA Wingham DJ, Siegert MJ, Shepherd A and Muir AS (2006) Rapid discharge connects Antarctic subglacial lakes. Nature, 440 (7087), 1033–1036 (doi:10.1038/nature04660) Wolff E, Barnes P and Mulvaney R (2004) EPICA Dome C Core EDC99 dielectric profiling data. (IGBP PAGES/World Data Center for Paleoclimatology Data Contribution Series 2004- 037) National Oceanic and Atmospheric Administration (NOAA)/National Geophysical Data Center (NGDC) Paleoclimatology Program, Boulder, CO ftp://ftp.ncdc.noaa.gov/pub/ data/paleo/icecore/antarctica/epica_domec/edc99_dep.txt Zirizzotti A, Baskarades JA, Bianchi C, Sciacca U, Tabacco IE and Zuccheretti E (2008) Glacio RADAR system and results. In Proceedings of IEEE Radar Conference (RADAR ’08), 26–30 May 2008, Rome, Italy. Institute of Electrical and Electronics Engineers, Piscataway, NJ, 1–3 (doi:10.1109/RADAR. 2008.4720993) Zirizzotti and 6 others (2010) Dry–wet bedrock interface detection by radio echo sounding measurements. IEEE Trans. Geosci. Remote Sens., 48(5), 2343–2348 (doi:10.1109/TGRS. S009.2038900) Zirizzotti A, Cafarella L and Urbini S (2012) Ice and bedrock characteristics underneath Dome C (Antarctica) from radio echo sounding data analysis. IEEE Trans. Geosci. Remote Sens., 50(1), 37–43 (doi:10.1109/TGRS.2011.2160551) 0022-1430 1727-5652 http://hdl.handle.net/2122/9099 doi:10.3189/2014JoG13J208 restricted Antarctic glaciology ice physics radio-echo sounding subglacial lakes 02. Cryosphere::02.02. Glaciers::02.02.10. Instruments and techniques article 2014 ftingv https://doi.org/10.3189/2014JoG13J208 https://doi.org/10.1038/nature05554 2022-07-29T06:06:38Z Radio-echo sounding (RES) is a radar technique widely employed in Antarctica and Greenland to define bedrock topography but, over the last decade, it has also played an important role in subglacial lake exploration and hydrogeological studies at the bedrock/ice interface. In recent studies, bedrock characterization has been improved through analysis of radar power echoes to evaluate the electromagnetic (EM) properties of the interface and allow the distinction between wet and dry interfaces. The RES received signal power depends on ice absorption and bedrock reflectivity, which is closely linked to the specific physical condition of the bedrock. In this paper, an evaluation of EM ice absorption was conducted starting from RES measurements collected over subglacial lakes in Antarctica. The idea was to calculate ice absorption starting from the radar equation in the case of subglacial lakes, where the EM reflectivity value is considered a known constant. These values were compared with those obtained from analysis of ice-core dielectric profiles from EPICA ice-core drilling data. Our analysis reveals that the ice absorption rate calculated from RES measurements has an average value of 7.2 dBkm–1, and it appears constant, independent of the subglacial lake depth in different zones of the Dome C area. Published 849-854 7A. Geofisica di esplorazione JCR Journal restricted Article in Journal/Newspaper Antarc* Antarctic Antarctica EPICA Greenland ice core Journal of Glaciology Earth-Prints (Istituto Nazionale di Geofisica e Vulcanologia) Antarctic Greenland Journal of Glaciology 60 223 849 854