An interhemispheric comparison of GPS phase scintillation with auroral emission observed at the South Pole and from the DMSP satellite
The global positioning system (GPS) phase scintillation caused by highlatitude ionospheric irregularities during an intense high-speed stream (HSS) of the solar wind from April 29 to May 5, 2011, was observed using arrays of GPS ionospheric scintillation and total electron content monitors in the Ar...
Published in: | Annals of Geophysics |
---|---|
Main Authors: | , , , , , , , , , , , , , , , , , , , |
Other Authors: | , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , |
Format: | Article in Journal/Newspaper |
Language: | English |
Published: |
INGV
2013
|
Subjects: | |
Online Access: | http://hdl.handle.net/2122/8731 https://doi.org/10.4401/ag-6227 |
id |
ftingv:oai:www.earth-prints.org:2122/8731 |
---|---|
record_format |
openpolar |
institution |
Open Polar |
collection |
Earth-Prints (Istituto Nazionale di Geofisica e Vulcanologia) |
op_collection_id |
ftingv |
language |
English |
topic |
Scintillations Solar-terrestrial interaction Space weather Solar variability and solar wind Magnetic storms 01. Atmosphere::01.02. Ionosphere::01.02.99. General or miscellaneous 01. Atmosphere::01.02. Ionosphere::01.02.05. Wave propagation 01. Atmosphere::01.02. Ionosphere::01.02.06. Instruments and techniques 01. Atmosphere::01.02. Ionosphere::01.02.07. Scintillations 05. General::05.07. Space and Planetary sciences::05.07.02. Space weather |
spellingShingle |
Scintillations Solar-terrestrial interaction Space weather Solar variability and solar wind Magnetic storms 01. Atmosphere::01.02. Ionosphere::01.02.99. General or miscellaneous 01. Atmosphere::01.02. Ionosphere::01.02.05. Wave propagation 01. Atmosphere::01.02. Ionosphere::01.02.06. Instruments and techniques 01. Atmosphere::01.02. Ionosphere::01.02.07. Scintillations 05. General::05.07. Space and Planetary sciences::05.07.02. Space weather Prikryl, P. Zhang, Y. Ebihara, Y. Ghoddousi-Fard, R. Jayachandran, P. T. Kinrade, J. Mitchell, C. N. Weatherwax, A. T. Bust, G. Cilliers, P. J. Spogli, L. Alfonsi, Lu. Romano, V. Ning, B. Li, G. Jarvis, M. J. Danskin, D. W. Spanswick, E. Donovan, E. Terkildsen, M. An interhemispheric comparison of GPS phase scintillation with auroral emission observed at the South Pole and from the DMSP satellite |
topic_facet |
Scintillations Solar-terrestrial interaction Space weather Solar variability and solar wind Magnetic storms 01. Atmosphere::01.02. Ionosphere::01.02.99. General or miscellaneous 01. Atmosphere::01.02. Ionosphere::01.02.05. Wave propagation 01. Atmosphere::01.02. Ionosphere::01.02.06. Instruments and techniques 01. Atmosphere::01.02. Ionosphere::01.02.07. Scintillations 05. General::05.07. Space and Planetary sciences::05.07.02. Space weather |
description |
The global positioning system (GPS) phase scintillation caused by highlatitude ionospheric irregularities during an intense high-speed stream (HSS) of the solar wind from April 29 to May 5, 2011, was observed using arrays of GPS ionospheric scintillation and total electron content monitors in the Arctic and Antarctica. The one-minute phase-scintillation index derived from the data sampled at 50 Hz was complemented by a proxy index (delta phase rate) obtained from 1-Hz GPS data. The scintillation occurrence coincided with the aurora borealis and aurora australis observed by an all-sky imager at the South Pole, and by special sensor ultraviolet scanning imagers on board satellites of the Defense Meteorological Satellites Program. The South Pole (SP) station is approximately conjugate with two Canadian High Arctic Ionospheric Network stations on Baffin Island, Canada, which provided the opportunity to study magnetic conjugacy of scintillation with support of riometers and magnetometers. The GPS ionospheric pierce points were mapped at their actual or conjugate locations, along with the auroral emission over the South Pole, assuming an altitude of 120 km. As the aurora brightened and/or drifted across the field of view of the all-sky imager, sequences of scintillation events were observed that indicated conjugate auroras as a locator of simultaneous or delayed bipolar scintillation events. In spite of the greater scintillation intensity in the auroral oval, where phase scintillation sometimes exceeded 1 radian during the auroral break-up and substorms, the percentage occurrence of moderate scintillation was highest in the cusp. Interhemispheric comparisons of bipolar scintillation maps show that the scintillation occurrence is significantly higher in the southern cusp and polar cap. Published R0216 1.7. Osservazioni di alta e media atmosfera 3.9. Fisica della magnetosfera, ionosfera e meteorologia spaziale JCR Journal open |
author2 |
Prikryl, P.; Communications Research Centre, Ottawa, ON, Canada Zhang, Y.; Johns Hopkins University Applied Physics Laboratory, Laurel, MD, United States Ebihara, Y.; Research Institute for Sustainable Humanosphere, Kyoto University, Kyoto, Japan Ghoddousi-Fard, R.; Natural Resources Canada, Geodetic Survey Division, Ottawa, ON, Canada Jayachandran, P. T.; University of New Brunswick, Physics Department, Fredericton, NB, Canada Kinrade, J.; University of Bath, Electronic and Electrical Engineering, Bath, United Kingdom Mitchell, C. N.; University of Bath, Electronic and Electrical Engineering, Bath, United Kingdom Weatherwax, A. T.; Siena College, Physics and Astronomy, Loudonville, NY, United States Bust, G.; Johns Hopkins University Applied Physics Laboratory, Laurel, MD, United States Cilliers, P. J.; South African National Space Agency, Space Science Directorate, Hermanus, South Africa Spogli, L.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Roma2, Roma, Italia Alfonsi, Lu.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Roma2, Roma, Italia Romano, V.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Roma2, Roma, Italia Ning, B.; Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing, China Li, G.; Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing, China Jarvis, M. J.; British Antarctic Survey, Physical Sciences Division, Cambridge, United Kingdom Danskin, D. W.; Natural Resources Canada, Geomagnetic Laboratory, Ottawa, ON, Canada Spanswick, E.; University of Calgary, Department of Physics and Astronomy, AB, Canada Donovan, E.; University of Calgary, Department of Physics and Astronomy, AB, Canada Terkildsen, M.; IPS Radio and Space Services, Bureau of Meteorology, Haymarket, NSW, Australia Communications Research Centre, Ottawa, ON, Canada Johns Hopkins University Applied Physics Laboratory, Laurel, MD, United States Research Institute for Sustainable Humanosphere, Kyoto University, Kyoto, Japan Natural Resources Canada, Geodetic Survey Division, Ottawa, ON, Canada University of New Brunswick, Physics Department, Fredericton, NB, Canada University of Bath, Electronic and Electrical Engineering, Bath, United Kingdom Siena College, Physics and Astronomy, Loudonville, NY, United States South African National Space Agency, Space Science Directorate, Hermanus, South Africa Istituto Nazionale di Geofisica e Vulcanologia, Sezione Roma2, Roma, Italia Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing, China British Antarctic Survey, Physical Sciences Division, Cambridge, United Kingdom Natural Resources Canada, Geomagnetic Laboratory, Ottawa, ON, Canada University of Calgary, Department of Physics and Astronomy, AB, Canada IPS Radio and Space Services, Bureau of Meteorology, Haymarket, NSW, Australia |
format |
Article in Journal/Newspaper |
author |
Prikryl, P. Zhang, Y. Ebihara, Y. Ghoddousi-Fard, R. Jayachandran, P. T. Kinrade, J. Mitchell, C. N. Weatherwax, A. T. Bust, G. Cilliers, P. J. Spogli, L. Alfonsi, Lu. Romano, V. Ning, B. Li, G. Jarvis, M. J. Danskin, D. W. Spanswick, E. Donovan, E. Terkildsen, M. |
author_facet |
Prikryl, P. Zhang, Y. Ebihara, Y. Ghoddousi-Fard, R. Jayachandran, P. T. Kinrade, J. Mitchell, C. N. Weatherwax, A. T. Bust, G. Cilliers, P. J. Spogli, L. Alfonsi, Lu. Romano, V. Ning, B. Li, G. Jarvis, M. J. Danskin, D. W. Spanswick, E. Donovan, E. Terkildsen, M. |
author_sort |
Prikryl, P. |
title |
An interhemispheric comparison of GPS phase scintillation with auroral emission observed at the South Pole and from the DMSP satellite |
title_short |
An interhemispheric comparison of GPS phase scintillation with auroral emission observed at the South Pole and from the DMSP satellite |
title_full |
An interhemispheric comparison of GPS phase scintillation with auroral emission observed at the South Pole and from the DMSP satellite |
title_fullStr |
An interhemispheric comparison of GPS phase scintillation with auroral emission observed at the South Pole and from the DMSP satellite |
title_full_unstemmed |
An interhemispheric comparison of GPS phase scintillation with auroral emission observed at the South Pole and from the DMSP satellite |
title_sort |
interhemispheric comparison of gps phase scintillation with auroral emission observed at the south pole and from the dmsp satellite |
publisher |
INGV |
publishDate |
2013 |
url |
http://hdl.handle.net/2122/8731 https://doi.org/10.4401/ag-6227 |
geographic |
Alta Arctic Baffin Island Canada South Pole |
geographic_facet |
Alta Arctic Baffin Island Canada South Pole |
genre |
Antarc* Antarctica Arctic Arctic aurora australis aurora borealis Baffin Island Baffin Canadian High Arctic Ionospheric Network South pole South pole |
genre_facet |
Antarc* Antarctica Arctic Arctic aurora australis aurora borealis Baffin Island Baffin Canadian High Arctic Ionospheric Network South pole South pole |
op_relation |
Annals of Geophysics 2 / 56 (2013) Alfonsi, L., L. Spogli, G. De Franceschi, V. Romano, M. Aquino, A. Dodson and C.N. Mitchell (2011). Bipolar climatology of GPS ionospheric scintillation at solar minimum, Radio Sci., 46, RS0D05; doi:10.1029/ 2010RS004571. Basu, S., E.J. Weber, T.W. Bullett, M.J. Keskinen, E. MacKenzie, P. Doherty, R. Sheehan, H. Kuenzler, P. Ning and J. Bongiolatti (1998). Characteristics of plasma structuring in the cusp/cleft region at Svalbard, Radio Sci., 33, 1885-1899; doi:10.1029/98RS01597. Belcher, J.W., and L. Davis Jr. (1971). Large-amplitude Alfvén waves in the interplanetary 458 medium, 2, J. Geophys. Res., 76, 3534-3563. Carlson, H.C. (2012). Sharpening our thinking about polar cap ionospheric patch morphology, research, and mitigation techniques, Radio Sci., 47, RS0L21; doi:10.1029/2011RS004946. Donovan, E., T. Trondsen, L. Cogger and B. Jackel (2003). Auroral imaging within the Canadian CANOPUS and NORSTAR projects, Sodankylä Geophysical Observatory Publications, 92, 109-112. Ebihara, Y., R. Kataoka, A.T. Weatherwax and M. Yamauchi (2010). Dayside proton aurora associated with magnetic impulse events: South Pole observations, J. Geophys. Res., 115, A04301; doi:10.1029/2009JA0 14760. Feldstein, Y.I., and G.V. Starkov (1967). Dynamics of auroral belt and polar geomagnetic disturbances, Planet. Space Sci., 15, 209-230. Ghoddousi-Fard, R., and F. Lahaye (2012). Monitoring GPS phase rate variations as a proxy scintillation index, Abstract G012-1465908, GNSS and the Atmosphere, AGU Fall Meeting, San Francisco, 3-7 December 2012. Holzworth, R.H., and C.-I. Meng (1975). Mathematical representation of the auroral oval, Geophys. Res. Lett., 2, 377-380. Huttunen, K.E.J., R. Schwenn, V. Bothmer and H.E.J. Koskinen (2005). Properties and geoeffectiveness of magnetic clouds in the rising, maximum and early declining phases of solar cycle 23, Annales Geophysicae, 23, 625-641; doi:10.5194/angeo-23-625-2005. Jayachandran, P.T., et al. (2009). Canadian High Arctic Ionospheric Network (CHAIN), Radio Sci., 44, RS0A03; doi:10.1029/2008RS004046. Kinrade, J., C.N. Mitchell, P. Yin, N. Smith, M.J. Jarvis, D.J. Maxfield, M.C. Rose, G.S. Bust and A.T. Weatherwax (2012). Ionospheric scintillation over Antarctica during the storm of 5-6 April 2010, J. Geophys. Res., 117, A05304; doi:10.1029/2011JA017073. Laundal, K.M., and N. Østgaard (2009). Asymmetric auroral intensities in the Earth's northern and southern hemispheres, Nature 460, 491-493; doi:10.1038/ nature08154. Li, G., B. Ning, Z. Ren and L. Hu (2010). Statistics of GPS ionospheric scintillation and irregularities over polar regions at solar minimum, GPS Solutions, 14 (4), 331-341; doi:10.1007/s10291-009-0156-x. Liu, W.W. (2005). Canadian space environment program and international living with a star, Adv. Space Res., 35, 51-60. Mann, I.R., D.K. Milling, I.J. Rae, L.G. Ozeke, A. Kale, Z.C. Kale, K.R. Murphy, A. Parent, M. Usanova, D.M. Pahud, V. Lee, E.-A. Amalraj, D.D. Wallis, V. Angelopoulos, K.-H. Glassmeier, C.T. Russell, H.- U., Auster and H.J. Singer (2008). The Upgraded CARISMA Magnetometer Array in the THEMIS Era, Space Sci. Rev., 141, 413-451; doi:10.1007/s1121 4-008-9457-6. Motoba, T., K. Hosokawa, Y. Ogawa, N. Sato, A. Kadokura, S.C. Buchert and H. Rème (2011). In-situ evidence for interplanetary magnetic field induced tail twisting associated with relative displacement of conjugate auroral features, J. Geophys. Res., 116, A04209; doi:10.1029/2010JA016206. Newell, P.T., T. Sotirelis and S. Wing (2009). Diffuse, monoenergetic, and broadband aurora: The global precipitation budget, J. Geophys. Res. 114, A09207; doi:10.1029/2009JA014326. Nosé, M., et al. (2012). Wp index: A new substorm index derived from high-resolution geomagnetic field data at low latitude, Space Weather, 10, S08002; doi:10.1029/2012SW000785. Osherovich, V.A., J. Fainberg and R.G. Stone (1999). Solar-wind quasi-invariant as a new index of solar activity, Geophys. Res. Lett., 26, 2597-2600. Østgaard, N., S.B. Mende, H.U. Frey, T.J. Immel, L.A. Frank, J.B. Sigwarth and T.J. Stubbs (2004). Interplanetary magnetic field control of the location of substorm onset and auroral features in the conjugate hemispheres, J. Geophys. Res., 109, A07204; doi:10.1029/2003JA010370. Paxton, L.J., D. Morrison, Y. Zhang, H. Kil, B. Wolven, B.S. Ogorzalek, D.C. Humm and C.-I. Meng (2002). Validation of remote sensing products produced by the Special Sensor Ultraviolet Scanning Imager (SSUSI) – a far-UV imaging spectrograph on DMSP F16, Proc. SPIE, 4485, 338. Prikryl, P., J.W. MacDougall, I.F. Grant, D.P. Steele, G.J. Sofko and R.A. Greenwald (1999). Observations of polar patches generated by solar wind Alfven wave coupling to the dayside magnetosphere, Annales Geophysicae, 17, 463-489. Prikryl, P., P.T. Jayachandran, S.C. Mushini, D. Pokhotelov, J.W. MacDougall, E., Donovan, E. Spanswick and J.-P. St.-Maurice (2010). GPS TEC, scintillation and cycle slips observed at high latitudes during solar minimum, Annales Geophysicae, 28, 1307-1316. Prikryl, P., P.T. Jayachandran, S.C. Mushini and R. Chadwick (2011a). Climatology of GPS phase scintillation and HF radar backscatter for the high-latitude ionosphere under solar minimum conditions, Annales Geophysicae, 29, 377-392; doi:10.5194/an geo-29-377-2011. Prikryl, P., et al. (2011b). Interhemispheric comparison of GPS phase scintillation at high latitudes during the magnetic-cloud-induced geomagnetic storm of 5-7 April 2010, Annales Geophysicae, 29, 2287-2304; doi:10.5194/angeo-29-2287-2011. Prikryl, P., R. Ghoddousi-Fard, B.S.R. Kunduri, E.G. Thomas, A.J. Coster, P.T. Jayachandran, E. Spanswick and D.W. Danskin (2013). GPS phase scintillation and proxy indices observed at high latitudes during a moderate geomagnetic storm, Annales Geophysicae, 31, 805-816; doi:10.5194/angeo-31-805-2013. Rodger, A.S., and A.C. Graham (1996). Diurnal and seasonal occurrence of polar patches, Annales Geophysicae, 14, 533-537. Sato, N., T. Nagaoka, K. Hashimoto and T. Saemundsson (1998). Conjugacy of isolated auroral arcs and nonconjugate auroral breakups, J. Geophys. Res., 103, 11641-11652; doi:10.1029/98JA00461. Sato, N., A. Kadokura, Y. Ebihara, H. Deguchi and T. Saemundsson (2005). Tracing geomagnetic conjugate points using exceptionally similar synchronous auroras, Geophys. Res. Lett., 32, L17109; doi:10.1029/ 2005GL023710. Smith, A.M., C.N. Mitchell, R.J. Watson, R.W. Meggs, P.M. Kintner, K. Kauristie and F. Honary (2008). GPS scintillation in the high arctic associated with an auroral arc, Space Weather, 6, S03D01; doi:10.1029/20 07SW000349. Spanswick, E., E. Donovan, R. Friedel and A. Korth (2007). Ground-based identification of dispersionless electron injections, Geophys. Res. Lett., 34, L03101; doi:10.1029/2006GL028329. Spogli L., Lu. Alfonsi, G. De Franceschi, V. Romano, M.H.O. Aquino and A. Dodson (2009). Climatology of GPS ionospheric scintillations over high and midlatitude European regions, Annales Geophysicae, 27, 3429-3437. Watson, C., P.T. Jayachandran, E. Spanswick, E.F. Donovan, and D.W. Danskin (2011). GPS TEC technique for observation of the evolution of substorm particle precipitation, J. Geophys. Res., 116, A00I90; doi:10.1029/2010JA015732. Zhang, Y. and L.J. Paxton (2008). An empirical Kp-dependent global auroral model based on TIMED/GUVI FUV data, J. Atmosph. Solar-Terrest. Phys., 70, 1231-1242. http://hdl.handle.net/2122/8731 doi:10.4401/ag-6227 |
op_rights |
open |
op_doi |
https://doi.org/10.4401/ag-6227 https://doi.org/10.1029/98RS01597 |
container_title |
Annals of Geophysics |
container_volume |
56 |
container_issue |
2 |
_version_ |
1766271558863552512 |
spelling |
ftingv:oai:www.earth-prints.org:2122/8731 2023-05-15T14:01:37+02:00 An interhemispheric comparison of GPS phase scintillation with auroral emission observed at the South Pole and from the DMSP satellite Prikryl, P. Zhang, Y. Ebihara, Y. Ghoddousi-Fard, R. Jayachandran, P. T. Kinrade, J. Mitchell, C. N. Weatherwax, A. T. Bust, G. Cilliers, P. J. Spogli, L. Alfonsi, Lu. Romano, V. Ning, B. Li, G. Jarvis, M. J. Danskin, D. W. Spanswick, E. Donovan, E. Terkildsen, M. Prikryl, P.; Communications Research Centre, Ottawa, ON, Canada Zhang, Y.; Johns Hopkins University Applied Physics Laboratory, Laurel, MD, United States Ebihara, Y.; Research Institute for Sustainable Humanosphere, Kyoto University, Kyoto, Japan Ghoddousi-Fard, R.; Natural Resources Canada, Geodetic Survey Division, Ottawa, ON, Canada Jayachandran, P. T.; University of New Brunswick, Physics Department, Fredericton, NB, Canada Kinrade, J.; University of Bath, Electronic and Electrical Engineering, Bath, United Kingdom Mitchell, C. N.; University of Bath, Electronic and Electrical Engineering, Bath, United Kingdom Weatherwax, A. T.; Siena College, Physics and Astronomy, Loudonville, NY, United States Bust, G.; Johns Hopkins University Applied Physics Laboratory, Laurel, MD, United States Cilliers, P. J.; South African National Space Agency, Space Science Directorate, Hermanus, South Africa Spogli, L.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Roma2, Roma, Italia Alfonsi, Lu.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Roma2, Roma, Italia Romano, V.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Roma2, Roma, Italia Ning, B.; Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing, China Li, G.; Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing, China Jarvis, M. J.; British Antarctic Survey, Physical Sciences Division, Cambridge, United Kingdom Danskin, D. W.; Natural Resources Canada, Geomagnetic Laboratory, Ottawa, ON, Canada Spanswick, E.; University of Calgary, Department of Physics and Astronomy, AB, Canada Donovan, E.; University of Calgary, Department of Physics and Astronomy, AB, Canada Terkildsen, M.; IPS Radio and Space Services, Bureau of Meteorology, Haymarket, NSW, Australia Communications Research Centre, Ottawa, ON, Canada Johns Hopkins University Applied Physics Laboratory, Laurel, MD, United States Research Institute for Sustainable Humanosphere, Kyoto University, Kyoto, Japan Natural Resources Canada, Geodetic Survey Division, Ottawa, ON, Canada University of New Brunswick, Physics Department, Fredericton, NB, Canada University of Bath, Electronic and Electrical Engineering, Bath, United Kingdom Siena College, Physics and Astronomy, Loudonville, NY, United States South African National Space Agency, Space Science Directorate, Hermanus, South Africa Istituto Nazionale di Geofisica e Vulcanologia, Sezione Roma2, Roma, Italia Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing, China British Antarctic Survey, Physical Sciences Division, Cambridge, United Kingdom Natural Resources Canada, Geomagnetic Laboratory, Ottawa, ON, Canada University of Calgary, Department of Physics and Astronomy, AB, Canada IPS Radio and Space Services, Bureau of Meteorology, Haymarket, NSW, Australia 2013 http://hdl.handle.net/2122/8731 https://doi.org/10.4401/ag-6227 en eng INGV Annals of Geophysics 2 / 56 (2013) Alfonsi, L., L. Spogli, G. De Franceschi, V. Romano, M. Aquino, A. Dodson and C.N. Mitchell (2011). Bipolar climatology of GPS ionospheric scintillation at solar minimum, Radio Sci., 46, RS0D05; doi:10.1029/ 2010RS004571. Basu, S., E.J. Weber, T.W. Bullett, M.J. Keskinen, E. MacKenzie, P. Doherty, R. Sheehan, H. Kuenzler, P. Ning and J. Bongiolatti (1998). Characteristics of plasma structuring in the cusp/cleft region at Svalbard, Radio Sci., 33, 1885-1899; doi:10.1029/98RS01597. Belcher, J.W., and L. Davis Jr. (1971). Large-amplitude Alfvén waves in the interplanetary 458 medium, 2, J. Geophys. Res., 76, 3534-3563. Carlson, H.C. (2012). Sharpening our thinking about polar cap ionospheric patch morphology, research, and mitigation techniques, Radio Sci., 47, RS0L21; doi:10.1029/2011RS004946. Donovan, E., T. Trondsen, L. Cogger and B. Jackel (2003). Auroral imaging within the Canadian CANOPUS and NORSTAR projects, Sodankylä Geophysical Observatory Publications, 92, 109-112. Ebihara, Y., R. Kataoka, A.T. Weatherwax and M. Yamauchi (2010). Dayside proton aurora associated with magnetic impulse events: South Pole observations, J. Geophys. Res., 115, A04301; doi:10.1029/2009JA0 14760. Feldstein, Y.I., and G.V. Starkov (1967). Dynamics of auroral belt and polar geomagnetic disturbances, Planet. Space Sci., 15, 209-230. Ghoddousi-Fard, R., and F. Lahaye (2012). Monitoring GPS phase rate variations as a proxy scintillation index, Abstract G012-1465908, GNSS and the Atmosphere, AGU Fall Meeting, San Francisco, 3-7 December 2012. Holzworth, R.H., and C.-I. Meng (1975). Mathematical representation of the auroral oval, Geophys. Res. Lett., 2, 377-380. Huttunen, K.E.J., R. Schwenn, V. Bothmer and H.E.J. Koskinen (2005). Properties and geoeffectiveness of magnetic clouds in the rising, maximum and early declining phases of solar cycle 23, Annales Geophysicae, 23, 625-641; doi:10.5194/angeo-23-625-2005. Jayachandran, P.T., et al. (2009). Canadian High Arctic Ionospheric Network (CHAIN), Radio Sci., 44, RS0A03; doi:10.1029/2008RS004046. Kinrade, J., C.N. Mitchell, P. Yin, N. Smith, M.J. Jarvis, D.J. Maxfield, M.C. Rose, G.S. Bust and A.T. Weatherwax (2012). Ionospheric scintillation over Antarctica during the storm of 5-6 April 2010, J. Geophys. Res., 117, A05304; doi:10.1029/2011JA017073. Laundal, K.M., and N. Østgaard (2009). Asymmetric auroral intensities in the Earth's northern and southern hemispheres, Nature 460, 491-493; doi:10.1038/ nature08154. Li, G., B. Ning, Z. Ren and L. Hu (2010). Statistics of GPS ionospheric scintillation and irregularities over polar regions at solar minimum, GPS Solutions, 14 (4), 331-341; doi:10.1007/s10291-009-0156-x. Liu, W.W. (2005). Canadian space environment program and international living with a star, Adv. Space Res., 35, 51-60. Mann, I.R., D.K. Milling, I.J. Rae, L.G. Ozeke, A. Kale, Z.C. Kale, K.R. Murphy, A. Parent, M. Usanova, D.M. Pahud, V. Lee, E.-A. Amalraj, D.D. Wallis, V. Angelopoulos, K.-H. Glassmeier, C.T. Russell, H.- U., Auster and H.J. Singer (2008). The Upgraded CARISMA Magnetometer Array in the THEMIS Era, Space Sci. Rev., 141, 413-451; doi:10.1007/s1121 4-008-9457-6. Motoba, T., K. Hosokawa, Y. Ogawa, N. Sato, A. Kadokura, S.C. Buchert and H. Rème (2011). In-situ evidence for interplanetary magnetic field induced tail twisting associated with relative displacement of conjugate auroral features, J. Geophys. Res., 116, A04209; doi:10.1029/2010JA016206. Newell, P.T., T. Sotirelis and S. Wing (2009). Diffuse, monoenergetic, and broadband aurora: The global precipitation budget, J. Geophys. Res. 114, A09207; doi:10.1029/2009JA014326. Nosé, M., et al. (2012). Wp index: A new substorm index derived from high-resolution geomagnetic field data at low latitude, Space Weather, 10, S08002; doi:10.1029/2012SW000785. Osherovich, V.A., J. Fainberg and R.G. Stone (1999). Solar-wind quasi-invariant as a new index of solar activity, Geophys. Res. Lett., 26, 2597-2600. Østgaard, N., S.B. Mende, H.U. Frey, T.J. Immel, L.A. Frank, J.B. Sigwarth and T.J. Stubbs (2004). Interplanetary magnetic field control of the location of substorm onset and auroral features in the conjugate hemispheres, J. Geophys. Res., 109, A07204; doi:10.1029/2003JA010370. Paxton, L.J., D. Morrison, Y. Zhang, H. Kil, B. Wolven, B.S. Ogorzalek, D.C. Humm and C.-I. Meng (2002). Validation of remote sensing products produced by the Special Sensor Ultraviolet Scanning Imager (SSUSI) – a far-UV imaging spectrograph on DMSP F16, Proc. SPIE, 4485, 338. Prikryl, P., J.W. MacDougall, I.F. Grant, D.P. Steele, G.J. Sofko and R.A. Greenwald (1999). Observations of polar patches generated by solar wind Alfven wave coupling to the dayside magnetosphere, Annales Geophysicae, 17, 463-489. Prikryl, P., P.T. Jayachandran, S.C. Mushini, D. Pokhotelov, J.W. MacDougall, E., Donovan, E. Spanswick and J.-P. St.-Maurice (2010). GPS TEC, scintillation and cycle slips observed at high latitudes during solar minimum, Annales Geophysicae, 28, 1307-1316. Prikryl, P., P.T. Jayachandran, S.C. Mushini and R. Chadwick (2011a). Climatology of GPS phase scintillation and HF radar backscatter for the high-latitude ionosphere under solar minimum conditions, Annales Geophysicae, 29, 377-392; doi:10.5194/an geo-29-377-2011. Prikryl, P., et al. (2011b). Interhemispheric comparison of GPS phase scintillation at high latitudes during the magnetic-cloud-induced geomagnetic storm of 5-7 April 2010, Annales Geophysicae, 29, 2287-2304; doi:10.5194/angeo-29-2287-2011. Prikryl, P., R. Ghoddousi-Fard, B.S.R. Kunduri, E.G. Thomas, A.J. Coster, P.T. Jayachandran, E. Spanswick and D.W. Danskin (2013). GPS phase scintillation and proxy indices observed at high latitudes during a moderate geomagnetic storm, Annales Geophysicae, 31, 805-816; doi:10.5194/angeo-31-805-2013. Rodger, A.S., and A.C. Graham (1996). Diurnal and seasonal occurrence of polar patches, Annales Geophysicae, 14, 533-537. Sato, N., T. Nagaoka, K. Hashimoto and T. Saemundsson (1998). Conjugacy of isolated auroral arcs and nonconjugate auroral breakups, J. Geophys. Res., 103, 11641-11652; doi:10.1029/98JA00461. Sato, N., A. Kadokura, Y. Ebihara, H. Deguchi and T. Saemundsson (2005). Tracing geomagnetic conjugate points using exceptionally similar synchronous auroras, Geophys. Res. Lett., 32, L17109; doi:10.1029/ 2005GL023710. Smith, A.M., C.N. Mitchell, R.J. Watson, R.W. Meggs, P.M. Kintner, K. Kauristie and F. Honary (2008). GPS scintillation in the high arctic associated with an auroral arc, Space Weather, 6, S03D01; doi:10.1029/20 07SW000349. Spanswick, E., E. Donovan, R. Friedel and A. Korth (2007). Ground-based identification of dispersionless electron injections, Geophys. Res. Lett., 34, L03101; doi:10.1029/2006GL028329. Spogli L., Lu. Alfonsi, G. De Franceschi, V. Romano, M.H.O. Aquino and A. Dodson (2009). Climatology of GPS ionospheric scintillations over high and midlatitude European regions, Annales Geophysicae, 27, 3429-3437. Watson, C., P.T. Jayachandran, E. Spanswick, E.F. Donovan, and D.W. Danskin (2011). GPS TEC technique for observation of the evolution of substorm particle precipitation, J. Geophys. Res., 116, A00I90; doi:10.1029/2010JA015732. Zhang, Y. and L.J. Paxton (2008). An empirical Kp-dependent global auroral model based on TIMED/GUVI FUV data, J. Atmosph. Solar-Terrest. Phys., 70, 1231-1242. http://hdl.handle.net/2122/8731 doi:10.4401/ag-6227 open Scintillations Solar-terrestrial interaction Space weather Solar variability and solar wind Magnetic storms 01. Atmosphere::01.02. Ionosphere::01.02.99. General or miscellaneous 01. Atmosphere::01.02. Ionosphere::01.02.05. Wave propagation 01. Atmosphere::01.02. Ionosphere::01.02.06. Instruments and techniques 01. Atmosphere::01.02. Ionosphere::01.02.07. Scintillations 05. General::05.07. Space and Planetary sciences::05.07.02. Space weather article 2013 ftingv https://doi.org/10.4401/ag-6227 https://doi.org/10.1029/98RS01597 2022-07-29T06:06:30Z The global positioning system (GPS) phase scintillation caused by highlatitude ionospheric irregularities during an intense high-speed stream (HSS) of the solar wind from April 29 to May 5, 2011, was observed using arrays of GPS ionospheric scintillation and total electron content monitors in the Arctic and Antarctica. The one-minute phase-scintillation index derived from the data sampled at 50 Hz was complemented by a proxy index (delta phase rate) obtained from 1-Hz GPS data. The scintillation occurrence coincided with the aurora borealis and aurora australis observed by an all-sky imager at the South Pole, and by special sensor ultraviolet scanning imagers on board satellites of the Defense Meteorological Satellites Program. The South Pole (SP) station is approximately conjugate with two Canadian High Arctic Ionospheric Network stations on Baffin Island, Canada, which provided the opportunity to study magnetic conjugacy of scintillation with support of riometers and magnetometers. The GPS ionospheric pierce points were mapped at their actual or conjugate locations, along with the auroral emission over the South Pole, assuming an altitude of 120 km. As the aurora brightened and/or drifted across the field of view of the all-sky imager, sequences of scintillation events were observed that indicated conjugate auroras as a locator of simultaneous or delayed bipolar scintillation events. In spite of the greater scintillation intensity in the auroral oval, where phase scintillation sometimes exceeded 1 radian during the auroral break-up and substorms, the percentage occurrence of moderate scintillation was highest in the cusp. Interhemispheric comparisons of bipolar scintillation maps show that the scintillation occurrence is significantly higher in the southern cusp and polar cap. Published R0216 1.7. Osservazioni di alta e media atmosfera 3.9. Fisica della magnetosfera, ionosfera e meteorologia spaziale JCR Journal open Article in Journal/Newspaper Antarc* Antarctica Arctic Arctic aurora australis aurora borealis Baffin Island Baffin Canadian High Arctic Ionospheric Network South pole South pole Earth-Prints (Istituto Nazionale di Geofisica e Vulcanologia) Alta Arctic Baffin Island Canada South Pole Annals of Geophysics 56 2 |