Upper mantle structure below the European continent: Constraints from surface-wave tomography and GRACE satellite gravity data

We here exploit fundamental mode Rayleigh and Love seismic wave information and the high resolution satellite global gravity model GGM02C to obtain a 1° × 1° 3-D image of: (a) upper-mantle isotropic shear-wave speeds; (b) densities; and (c) density-vS coupling below the European plate (20°N–90°N) (4...

Full description

Bibliographic Details
Published in:Journal of Geophysical Research: Solid Earth
Main Authors: Tondi, R., Schivardi, R., Molinari, I., Morelli, A.
Other Authors: Tondi, R.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Bologna, Bologna, Italia, Schivardi, R.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Bologna, Bologna, Italia, Molinari, I.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Bologna, Bologna, Italia, Morelli, A.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Bologna, Bologna, Italia, Istituto Nazionale di Geofisica e Vulcanologia, Sezione Bologna, Bologna, Italia
Format: Article in Journal/Newspaper
Language:English
Published: American Geophysical Union 2012
Subjects:
Online Access:http://hdl.handle.net/2122/8056
http://www.agu.org/pubs/crossref/2012/2012JB009149.shtml
https://doi.org/10.1029/2012JB009149
id ftingv:oai:www.earth-prints.org:2122/8056
record_format openpolar
institution Open Polar
collection Earth-Prints (Istituto Nazionale di Geofisica e Vulcanologia)
op_collection_id ftingv
language English
topic Europe
GRACE
density-velocity scaling relationship
dynamic topography
surface waves
upper mantle density
04. Solid Earth::04.01. Earth Interior::04.01.01. Composition and state
04. Solid Earth::04.03. Geodesy::04.03.03. Gravity and isostasy
04. Solid Earth::04.06. Seismology::04.06.07. Tomography and anisotropy
04. Solid Earth::04.07. Tectonophysics::04.07.02. Geodynamics
05. General::05.01. Computational geophysics::05.01.03. Inverse methods
spellingShingle Europe
GRACE
density-velocity scaling relationship
dynamic topography
surface waves
upper mantle density
04. Solid Earth::04.01. Earth Interior::04.01.01. Composition and state
04. Solid Earth::04.03. Geodesy::04.03.03. Gravity and isostasy
04. Solid Earth::04.06. Seismology::04.06.07. Tomography and anisotropy
04. Solid Earth::04.07. Tectonophysics::04.07.02. Geodynamics
05. General::05.01. Computational geophysics::05.01.03. Inverse methods
Tondi, R.
Schivardi, R.
Molinari, I.
Morelli, A.
Upper mantle structure below the European continent: Constraints from surface-wave tomography and GRACE satellite gravity data
topic_facet Europe
GRACE
density-velocity scaling relationship
dynamic topography
surface waves
upper mantle density
04. Solid Earth::04.01. Earth Interior::04.01.01. Composition and state
04. Solid Earth::04.03. Geodesy::04.03.03. Gravity and isostasy
04. Solid Earth::04.06. Seismology::04.06.07. Tomography and anisotropy
04. Solid Earth::04.07. Tectonophysics::04.07.02. Geodynamics
05. General::05.01. Computational geophysics::05.01.03. Inverse methods
description We here exploit fundamental mode Rayleigh and Love seismic wave information and the high resolution satellite global gravity model GGM02C to obtain a 1° × 1° 3-D image of: (a) upper-mantle isotropic shear-wave speeds; (b) densities; and (c) density-vS coupling below the European plate (20°N–90°N) (40°W–70°E). The 3-D image of the density-vS coupling provides unprecedented detail of information on the compositional and thermal contributions to density structures. The accurate and high-resolution crustal model allows us to compute a reliable residual topography to understand the dynamic implications of our models. The correlation between residual topography and mantle residual gravity anomalies defines three large-scale regions where upper mantle dynamics produce surface expression: the East European Craton; the eastern side of the Arabian Plate; and the Mediterranean Basin. The effects of mantle convection are also clearly visible at: (1) the Eastern Sirt Embayment; (2) the West African Craton northern margins; (3) the volcanically active region of the Canarian Archipelago; (4) the northern edge of the Central European Volcanic Province; and (5) the Northeastern part of the Atlantic Ocean, between Greenland and Iceland. Strong connections are observed among areas of weak radial anisotropy and areas where the mantle dynamics show surface expression. Although both thermal and additional dependencies have been incorporated into the density model, convective down-welling in the mantle below the East European Craton is required to explain the strong correlation between the estimated negative mantle residual anomalies and the negative residual topography. DATEC MERG-CT-2007-046522 and NERIES INFRAST-2.1-026130 Published B09401 3.3. Geodinamica e struttura dell'interno della Terra JCR Journal restricted
author2 Tondi, R.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Bologna, Bologna, Italia
Schivardi, R.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Bologna, Bologna, Italia
Molinari, I.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Bologna, Bologna, Italia
Morelli, A.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Bologna, Bologna, Italia
Istituto Nazionale di Geofisica e Vulcanologia, Sezione Bologna, Bologna, Italia
format Article in Journal/Newspaper
author Tondi, R.
Schivardi, R.
Molinari, I.
Morelli, A.
author_facet Tondi, R.
Schivardi, R.
Molinari, I.
Morelli, A.
author_sort Tondi, R.
title Upper mantle structure below the European continent: Constraints from surface-wave tomography and GRACE satellite gravity data
title_short Upper mantle structure below the European continent: Constraints from surface-wave tomography and GRACE satellite gravity data
title_full Upper mantle structure below the European continent: Constraints from surface-wave tomography and GRACE satellite gravity data
title_fullStr Upper mantle structure below the European continent: Constraints from surface-wave tomography and GRACE satellite gravity data
title_full_unstemmed Upper mantle structure below the European continent: Constraints from surface-wave tomography and GRACE satellite gravity data
title_sort upper mantle structure below the european continent: constraints from surface-wave tomography and grace satellite gravity data
publisher American Geophysical Union
publishDate 2012
url http://hdl.handle.net/2122/8056
http://www.agu.org/pubs/crossref/2012/2012JB009149.shtml
https://doi.org/10.1029/2012JB009149
geographic Greenland
geographic_facet Greenland
genre Greenland
Iceland
genre_facet Greenland
Iceland
op_relation Journal of geophysical research - solid earth
/117(2012)
Artemieva, I. (2003), Lithospheric structure, composition, and thermal regime of the East European Craton: Implications for the subsidence of the Russian platform, Earth Planet. Sci. Lett., 213, 431–446. Artemieva, I. (2007), Dynamic topography of the East European craton: Shedding light upon lithospheric structure, composition and mantle dynamics, Global Planet. Change, 58, 411–434. Bassin, C., G. Laske, and G. Masters (2000), The current limits of resolution for surface wave tomography in North America, Eos Trans. AGU, 81, 48. Birch, F. (1964), Density and composition of mantle and core, J. Geophys. Res., 69(20), 4377–4384. Burke, K., and J. Dewey (1974), Two plates in Africa during Cretaceous?, Nature, 249, 313–316. Cammarano, F., A. Deuss, S. Goes, and D. Giardini (2005), Onedimensional physical reference models for the upper-mantle and transition zone: Combining seismic and mineral physics constraints, J. Geophys. Res., 110, B01306, doi:10.1029/2004JB003272. Caratori Tontini, F., F. Graziano, L. Cocchi, C. Carmisciano, and P. Stefanelli (2007), Determining the optimal Bouguer density for a gravity data set: Implications for the isostatic setting of the Mediterranean Sea, Geophys. J. Int., 169, 380–388. Cazenave, A., and B. Lago (1991), Long wavelength topography seafloor subsidence and flattening, Geophys. Res. Lett., 18, 1257–1260. Chang, S., S. van der Lee, M. P. Flanahan, H. Bedle, F. Marone, E. M. Matzel, M. E. Pasyanos, A. J. Rodgers, B. Romanowicz, and C. Schmid (2010), Joint inversion for three-dimensional S velocity mantle structure along the Tethian margin, J. Geophys. Res., 115, B08309, doi:10.1029/ 2009JB007204. Chang, S., M. Merino, S. van der Lee, S. Stein, and C. A. Stein (2011), Mantle flow beneath Arabia offset from the opening Red Sea, Geophys. Res. Lett., 38, L04301, doi:10.1029/2010GL045852. Chung, D. H. (1972), Birch’s law: Why is it so good?, Science, 177, 261–263. Conrad, C. P., M. D. Behn, and P. G. Silver (2007), Global mantle flow and the development of seismic anisotropy: Differences between the oceanic and continental upper mantle, J. Geophys. Res., 112, B07317, doi:10.1029/2006JB004608. Daradich, A. J., J. X. Mitrovica, R. N. Pysklywec, S. D. Willett, and A. M. Forte (2003), Mantle flow, dynamic topography and rift-flank uplift of Arabia, Geology, 31, 901–904, doi:10.1130/G19661.1. Deschamps, F., and J. Trampert (2003), Mantle tomography and its relation to temperature and composition, Phys. Earth Planet. Inter., 140, 277–291. Dziewonski, A. M., and D. L. Anderson (1981), Preliminary reference Earth model, Phys. Earth Planet. Inter., 25, 297–356. Dziewonski, A., S. Bloch, and M. Landisman (1969), A technique for the analysis of transient seismic signals, Bull. Seismol. Soc. Am., 59, 427–444. Faccenna, C., and T. W. Becker (2010), Shaping mobile belts by smallscale convection, Nature, 465, 602–605, doi:10.1038/nature09064. Forte, A. M., and H. K. C. Perry (2000), Geodynamic evidence for a chemically depleted continental tectosphere, Science, 290, 1940–1944. Foulger, G. R., and D. L. Anderson (2005), A cool model for the Iceland hotspot, J. Volcanol. Geotherm. Res., 141, 1–22. Gök, R., et al. (2011), Lithospheric velocity structure of the Anatolian plateau-Caucasus-Caspian region, J. Geophys. Res., 116, B05303, doi:10.1029/2009JB000837. Granet, M., M. Wilson, and U. Achauer (1995), Imaging a mantle plume beneath the French Massif Central, Earth Planet. Sci. Lett., 136, 281–296. Grünthal, G., and D. Stromeyer (1992), The recent crustal stress field in Central Europe: Trajectories and finite element modeling, J. Geophys. Res., 97(B8), 11,805–11,820. Gurnis, M. (1990), Bounds on global dynamic topography from Phanerozoic flooding of continental platforms, Nature, 344, 754–756. Hager, B. H., R. W. Clayton, M. A. Richards, R. P. Comer, and A. M. Dziewonski (1985), Lower mantle heterogeneity, dynamic topography and the geoid, Nature, 313, 541–545. Hallett, D. (2002), Petroleum Geology of Lybia, Elsevier, Amsterdam. Hermann, R. B. (2005), Computer Programs in Seismology, Version 3.30, St. Louis Univ., St. Louis, Mo. Herrin, E., and T. Goforth (1977), Phase matched filters: Application to the study of Rayleigh waves, Bull. Seismol. Soc. Am., 67, 1259–1275. Hoernle, K., Y. Zhang, and D. Graham (1995), Seismic and geochemical evidence for large-scale mantle upwelling beneath the eastern Atlantic and western and central Europe, Nature, 374, 34–39. Irvine, G. J., D. G. Pearson, and R. W. Carlson (2001), Evolution of the Kaapval lithospheric mantle: A Re-Os isotope study of peridotite xenoliths from Lesotho kimberlites, Geophys. Res. Lett., 28, 2505–2508. Ishii, M., and J. Tromp (1999), Normal-mode and free-air gravity contraints on lateral variations in velocity and density of Earth’s mantle, Science, 285, 1231–1236. Japsen, P., and J. A. Chalmers (2000), Neogene uplift and tectonics around the North Atlantic: Overwiew, Global Planet. Change, 24, 165–173. Jordan, T. H. (1978), Composition and development of the continental tectosphere, Nature, 274, 544–548. Kaban, M. K., P. Schwintzer, I. M. Artemieva, and W. D. Mooney (2003), Density of the continental roots: Compositional and thermal contributions, Earth Planet. Sci. Lett., 209, 53–69. Kaban, M. K., M. Tesauro, and S. Cloetingh (2010), An integrated gravity model for Europe’s crust and upper mantle, Earth Planet. Sci. Lett., 296, 195–209. Karato, S. (1993), Importance of anelasticity in the interpretation of seismic tomography, Geophys. Res. Lett., 20, 1623–1626, doi:10.1029/ 93GL01767. Karato, S., H. Jung, I. Katayama, and P. Skemer (2008), Geodynamic significance of seismic anisotropy of the upper mantle: New insights from laboratory studies, Annu. Rev. Earth Planet. Sci., 36, 59–95. Karato, S., and B. B. Karki (2001), Origin of lateral variation of seismic wave velocities and density in the deep mantle, J. Geophys. Res., 106(B10), 21,771–21,783, doi:10.1029/2001JB0000214. Koulakov, I., M. K. Kaban, M. Tesauro, and S. Cloetingh (2009), P- and S-velocity anomalies in the upper mantle beneath Europe from tomographic inversion of ISC data, Geophys. J. Int., 179, 345–366. Kozlovskaya, E., T. Janik, J. Yliniemi, G. Karateyev, and M. Grad (2004), Density-velocity relationship in the upper lithosphere obtained from P- and S-wave velocity models along the Eurobridge’97 seismic profile and gravity data, Acta Geophys. Pol., 52(4), 397–424. Kumar, P., R. Kind, K. Priestley, and T. Dahl-Jensen (2007), Crustal structure of Iceland and Greenland from receiver function studies, J. Geophys. Res., 112, B03301, doi:10.1029/2005JB003991. Kustowski, B., G. Ekström, and A. M. Dziewonski (2008), The shear-wave velocity structure in the upper mantle beneath Eurasia, Geophys. J. Int., 174, 978–992. Landisman, M., A. Dziewonski, and Y. Satö (1969), Recent improvements in the analysis of surface wave observations, Geophys. J. R. Astron. Soc., 17, 369–403. Le Stunff, Y., and Y. Ricard (1995), Topography and geoid due to lithospheric mass anomalies, Geophys. J. Int., 122, 982–990. Manaman, N. S., and H. Shomali (2010), Upper mantle S-velocity structure and Moho depth variations across Zagros belt, Arabian-Eurasian plate bounday, Phys. Earth Planet. Inter., 180, 92–103. Margheriti, L., et al. (2006), RETREAT seismic deployment in the northern Apennines, Ann. Geophys., 49, 1005–1017. Marone, F., Y. Gung, and B. Romanowicz (2007), Three-dimensional radial anisotropic structure of the North American upper mantle from inversion of surface waveform data, Geophys. J. Int., 171, 206–222, doi:10.1111/j.1365-246X.2007.03465.x. Maystrenko, Y., and M. Scheck-Wenderoth (2009), Density contrasts in the upper mantle and lower crust across the continent-ocean transition: constraints from 3-D gravity modelling at the Norwegian margin, Geophys. J. Int., 179, 536–548, doi:10.1111/j.1365-246X.2009.04273.x. Molinari I., and A. Morelli (2011), EPcrust: A reference crustal model for the European plate, Geophys. J. Int., 185, 352–364. Molinaro, M., H. Zeyen, and X. Laurencin (2005), Lithospheric structure beneath the south-eastern Zagros Mountains, Iran: Recent slab breakoff?, Terra Nova, 17, 1–6. Nyblade, A. A., I. S. Suleiman, R. F. Roy, B. Pursell, A. S. Suleiman, D. I. Doser, and G. R. Keller (1996), Terrestrial heat flow in the Sirt Basin, Lybia, and the pattern of heat flow across northern Africa, J. Geophys. Res., 101(B8), 17,737–17,746. Otto, S. C. (1997), Mesozoic-Cenozoic history of deformation and petroleum systems in sedimentary basins of central Asia: Implications of collisions on the Eurasian margin, Pet. Geosci., 3, 327–341. Panasyuk, S. V., and B. H. Hager (2000), Models of isostatic and dynamic topography, geoid anomalies, and their uncertainties, J. Geophys. Res., 105(B12), 28,199–28,209. Panning M., and B. Romanowicz (2006), A three-dimensional radially anisotropic model of shear velocity in the whole mantle, Geophys. J. Int., 167, 361–379. Pekeris, C. L. (1935), Thermal convection in the interior of the Earth, Geophys. J. Int., 3, 343–367, doi:10.1111/j.1365-246X.1935.tb01742.x. Piromallo, C., and A. Morelli (2003), P wave tomography of the mantle under the Alpine-Mediterranean area, J. Geophys. Res., 108(B2), 2065, doi:10.1029/2002JB001757. Plant, J. A., A. Whittaker, A. Demetriades, B. De Vivo, and J. Lexa (2003), The geological and tectonic framework of Europe, in Geochemical Atlas of Europe, edited by R. Salminen, 1–20, Geol. Surv. of Finland, Espoo. Pohánka, V. (1988), Optimum expression for computation of the gravity field of a homogeneous polyhedral body, Geophys. Prospect., 36, 733–751. Richards, M. A., and B. H. Hager (1984), Geoid anomalies in a dynamic Earth, J. Geophys. Res., 89, 5987–6002. Ritsema, J., H. J. van Heijst, and J. H. Woodhouse (1999), Complex shear wave velocity structure imaged beneath Africa and Iceland, Science, 286, 1925–1928. Ritzmann, O., N. Mërcklin, J. I. Faleide, H. Bungum, W. D. Mooney, and S. T. Detweiler (2007), A three-dimensional geophysical model of the crust in the Barents Sea region: Model construction and basement characterization, Geophys. J. Int., 170(1), 417–435. Romanowicz, B. (2009), The thickness of tectonic plates, Science, 324, 474–476. Schaefer, J. F., L. Boschi, T. W. Becker, and E. Kissling (2011), Radial anisotropy in the European mantle: Tomographic studies explored in terms of mantle flow, Geophys. Res. Lett., 38, L23304, doi:10.1029/ 2011GL049687. Schivardi, R., and A. Morelli (2009), Surface wave tomography in the European and Mediterranean region, Geophys. J. Int., 177, 1050–1066. Schivardi, R., and A. Morelli (2011), EPmantle: A three-dimensional transversely isotropic model of the upper mantle under the European Plate, Geophys. J. Int., 185, 469–484. Schmid, C., S. van der Lee, J. C. VanDecar, E. R. Engdhal, and D. Giardini (2008), Three-dimensional S velocity of the mantle in the Africa-Eurasia plate boundary region from phase arrival times and regional waveforms, J. Geophys. Res., 113, B03306, doi:10.1029/2005JB004193.
0148-0227
http://hdl.handle.net/2122/8056
http://www.agu.org/pubs/crossref/2012/2012JB009149.shtml
doi:10.1029/2012JB009149
op_rights restricted
op_doi https://doi.org/10.1029/2012JB009149
container_title Journal of Geophysical Research: Solid Earth
container_volume 117
container_issue B9
_version_ 1766020271058190336
spelling ftingv:oai:www.earth-prints.org:2122/8056 2023-05-15T16:30:32+02:00 Upper mantle structure below the European continent: Constraints from surface-wave tomography and GRACE satellite gravity data Tondi, R. Schivardi, R. Molinari, I. Morelli, A. Tondi, R.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Bologna, Bologna, Italia Schivardi, R.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Bologna, Bologna, Italia Molinari, I.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Bologna, Bologna, Italia Morelli, A.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Bologna, Bologna, Italia Istituto Nazionale di Geofisica e Vulcanologia, Sezione Bologna, Bologna, Italia 2012-09-05 http://hdl.handle.net/2122/8056 http://www.agu.org/pubs/crossref/2012/2012JB009149.shtml https://doi.org/10.1029/2012JB009149 en eng American Geophysical Union Journal of geophysical research - solid earth /117(2012) Artemieva, I. (2003), Lithospheric structure, composition, and thermal regime of the East European Craton: Implications for the subsidence of the Russian platform, Earth Planet. Sci. Lett., 213, 431–446. Artemieva, I. (2007), Dynamic topography of the East European craton: Shedding light upon lithospheric structure, composition and mantle dynamics, Global Planet. Change, 58, 411–434. Bassin, C., G. Laske, and G. Masters (2000), The current limits of resolution for surface wave tomography in North America, Eos Trans. AGU, 81, 48. Birch, F. (1964), Density and composition of mantle and core, J. Geophys. Res., 69(20), 4377–4384. Burke, K., and J. Dewey (1974), Two plates in Africa during Cretaceous?, Nature, 249, 313–316. Cammarano, F., A. Deuss, S. Goes, and D. Giardini (2005), Onedimensional physical reference models for the upper-mantle and transition zone: Combining seismic and mineral physics constraints, J. Geophys. Res., 110, B01306, doi:10.1029/2004JB003272. Caratori Tontini, F., F. Graziano, L. Cocchi, C. Carmisciano, and P. Stefanelli (2007), Determining the optimal Bouguer density for a gravity data set: Implications for the isostatic setting of the Mediterranean Sea, Geophys. J. Int., 169, 380–388. Cazenave, A., and B. Lago (1991), Long wavelength topography seafloor subsidence and flattening, Geophys. Res. Lett., 18, 1257–1260. Chang, S., S. van der Lee, M. P. Flanahan, H. Bedle, F. Marone, E. M. Matzel, M. E. Pasyanos, A. J. Rodgers, B. Romanowicz, and C. Schmid (2010), Joint inversion for three-dimensional S velocity mantle structure along the Tethian margin, J. Geophys. Res., 115, B08309, doi:10.1029/ 2009JB007204. Chang, S., M. Merino, S. van der Lee, S. Stein, and C. A. Stein (2011), Mantle flow beneath Arabia offset from the opening Red Sea, Geophys. Res. Lett., 38, L04301, doi:10.1029/2010GL045852. Chung, D. H. (1972), Birch’s law: Why is it so good?, Science, 177, 261–263. Conrad, C. P., M. D. Behn, and P. G. Silver (2007), Global mantle flow and the development of seismic anisotropy: Differences between the oceanic and continental upper mantle, J. Geophys. Res., 112, B07317, doi:10.1029/2006JB004608. Daradich, A. J., J. X. Mitrovica, R. N. Pysklywec, S. D. Willett, and A. M. Forte (2003), Mantle flow, dynamic topography and rift-flank uplift of Arabia, Geology, 31, 901–904, doi:10.1130/G19661.1. Deschamps, F., and J. Trampert (2003), Mantle tomography and its relation to temperature and composition, Phys. Earth Planet. Inter., 140, 277–291. Dziewonski, A. M., and D. L. Anderson (1981), Preliminary reference Earth model, Phys. Earth Planet. Inter., 25, 297–356. Dziewonski, A., S. Bloch, and M. Landisman (1969), A technique for the analysis of transient seismic signals, Bull. Seismol. Soc. Am., 59, 427–444. Faccenna, C., and T. W. Becker (2010), Shaping mobile belts by smallscale convection, Nature, 465, 602–605, doi:10.1038/nature09064. Forte, A. M., and H. K. C. Perry (2000), Geodynamic evidence for a chemically depleted continental tectosphere, Science, 290, 1940–1944. Foulger, G. R., and D. L. Anderson (2005), A cool model for the Iceland hotspot, J. Volcanol. Geotherm. Res., 141, 1–22. Gök, R., et al. (2011), Lithospheric velocity structure of the Anatolian plateau-Caucasus-Caspian region, J. Geophys. Res., 116, B05303, doi:10.1029/2009JB000837. Granet, M., M. Wilson, and U. Achauer (1995), Imaging a mantle plume beneath the French Massif Central, Earth Planet. Sci. Lett., 136, 281–296. Grünthal, G., and D. Stromeyer (1992), The recent crustal stress field in Central Europe: Trajectories and finite element modeling, J. Geophys. Res., 97(B8), 11,805–11,820. Gurnis, M. (1990), Bounds on global dynamic topography from Phanerozoic flooding of continental platforms, Nature, 344, 754–756. Hager, B. H., R. W. Clayton, M. A. Richards, R. P. Comer, and A. M. Dziewonski (1985), Lower mantle heterogeneity, dynamic topography and the geoid, Nature, 313, 541–545. Hallett, D. (2002), Petroleum Geology of Lybia, Elsevier, Amsterdam. Hermann, R. B. (2005), Computer Programs in Seismology, Version 3.30, St. Louis Univ., St. Louis, Mo. Herrin, E., and T. Goforth (1977), Phase matched filters: Application to the study of Rayleigh waves, Bull. Seismol. Soc. Am., 67, 1259–1275. Hoernle, K., Y. Zhang, and D. Graham (1995), Seismic and geochemical evidence for large-scale mantle upwelling beneath the eastern Atlantic and western and central Europe, Nature, 374, 34–39. Irvine, G. J., D. G. Pearson, and R. W. Carlson (2001), Evolution of the Kaapval lithospheric mantle: A Re-Os isotope study of peridotite xenoliths from Lesotho kimberlites, Geophys. Res. Lett., 28, 2505–2508. Ishii, M., and J. Tromp (1999), Normal-mode and free-air gravity contraints on lateral variations in velocity and density of Earth’s mantle, Science, 285, 1231–1236. Japsen, P., and J. A. Chalmers (2000), Neogene uplift and tectonics around the North Atlantic: Overwiew, Global Planet. Change, 24, 165–173. Jordan, T. H. (1978), Composition and development of the continental tectosphere, Nature, 274, 544–548. Kaban, M. K., P. Schwintzer, I. M. Artemieva, and W. D. Mooney (2003), Density of the continental roots: Compositional and thermal contributions, Earth Planet. Sci. Lett., 209, 53–69. Kaban, M. K., M. Tesauro, and S. Cloetingh (2010), An integrated gravity model for Europe’s crust and upper mantle, Earth Planet. Sci. Lett., 296, 195–209. Karato, S. (1993), Importance of anelasticity in the interpretation of seismic tomography, Geophys. Res. Lett., 20, 1623–1626, doi:10.1029/ 93GL01767. Karato, S., H. Jung, I. Katayama, and P. Skemer (2008), Geodynamic significance of seismic anisotropy of the upper mantle: New insights from laboratory studies, Annu. Rev. Earth Planet. Sci., 36, 59–95. Karato, S., and B. B. Karki (2001), Origin of lateral variation of seismic wave velocities and density in the deep mantle, J. Geophys. Res., 106(B10), 21,771–21,783, doi:10.1029/2001JB0000214. Koulakov, I., M. K. Kaban, M. Tesauro, and S. Cloetingh (2009), P- and S-velocity anomalies in the upper mantle beneath Europe from tomographic inversion of ISC data, Geophys. J. Int., 179, 345–366. Kozlovskaya, E., T. Janik, J. Yliniemi, G. Karateyev, and M. Grad (2004), Density-velocity relationship in the upper lithosphere obtained from P- and S-wave velocity models along the Eurobridge’97 seismic profile and gravity data, Acta Geophys. Pol., 52(4), 397–424. Kumar, P., R. Kind, K. Priestley, and T. Dahl-Jensen (2007), Crustal structure of Iceland and Greenland from receiver function studies, J. Geophys. Res., 112, B03301, doi:10.1029/2005JB003991. Kustowski, B., G. Ekström, and A. M. Dziewonski (2008), The shear-wave velocity structure in the upper mantle beneath Eurasia, Geophys. J. Int., 174, 978–992. Landisman, M., A. Dziewonski, and Y. Satö (1969), Recent improvements in the analysis of surface wave observations, Geophys. J. R. Astron. Soc., 17, 369–403. Le Stunff, Y., and Y. Ricard (1995), Topography and geoid due to lithospheric mass anomalies, Geophys. J. Int., 122, 982–990. Manaman, N. S., and H. Shomali (2010), Upper mantle S-velocity structure and Moho depth variations across Zagros belt, Arabian-Eurasian plate bounday, Phys. Earth Planet. Inter., 180, 92–103. Margheriti, L., et al. (2006), RETREAT seismic deployment in the northern Apennines, Ann. Geophys., 49, 1005–1017. Marone, F., Y. Gung, and B. Romanowicz (2007), Three-dimensional radial anisotropic structure of the North American upper mantle from inversion of surface waveform data, Geophys. J. Int., 171, 206–222, doi:10.1111/j.1365-246X.2007.03465.x. Maystrenko, Y., and M. Scheck-Wenderoth (2009), Density contrasts in the upper mantle and lower crust across the continent-ocean transition: constraints from 3-D gravity modelling at the Norwegian margin, Geophys. J. Int., 179, 536–548, doi:10.1111/j.1365-246X.2009.04273.x. Molinari I., and A. Morelli (2011), EPcrust: A reference crustal model for the European plate, Geophys. J. Int., 185, 352–364. Molinaro, M., H. Zeyen, and X. Laurencin (2005), Lithospheric structure beneath the south-eastern Zagros Mountains, Iran: Recent slab breakoff?, Terra Nova, 17, 1–6. Nyblade, A. A., I. S. Suleiman, R. F. Roy, B. Pursell, A. S. Suleiman, D. I. Doser, and G. R. Keller (1996), Terrestrial heat flow in the Sirt Basin, Lybia, and the pattern of heat flow across northern Africa, J. Geophys. Res., 101(B8), 17,737–17,746. Otto, S. C. (1997), Mesozoic-Cenozoic history of deformation and petroleum systems in sedimentary basins of central Asia: Implications of collisions on the Eurasian margin, Pet. Geosci., 3, 327–341. Panasyuk, S. V., and B. H. Hager (2000), Models of isostatic and dynamic topography, geoid anomalies, and their uncertainties, J. Geophys. Res., 105(B12), 28,199–28,209. Panning M., and B. Romanowicz (2006), A three-dimensional radially anisotropic model of shear velocity in the whole mantle, Geophys. J. Int., 167, 361–379. Pekeris, C. L. (1935), Thermal convection in the interior of the Earth, Geophys. J. Int., 3, 343–367, doi:10.1111/j.1365-246X.1935.tb01742.x. Piromallo, C., and A. Morelli (2003), P wave tomography of the mantle under the Alpine-Mediterranean area, J. Geophys. Res., 108(B2), 2065, doi:10.1029/2002JB001757. Plant, J. A., A. Whittaker, A. Demetriades, B. De Vivo, and J. Lexa (2003), The geological and tectonic framework of Europe, in Geochemical Atlas of Europe, edited by R. Salminen, 1–20, Geol. Surv. of Finland, Espoo. Pohánka, V. (1988), Optimum expression for computation of the gravity field of a homogeneous polyhedral body, Geophys. Prospect., 36, 733–751. Richards, M. A., and B. H. Hager (1984), Geoid anomalies in a dynamic Earth, J. Geophys. Res., 89, 5987–6002. Ritsema, J., H. J. van Heijst, and J. H. Woodhouse (1999), Complex shear wave velocity structure imaged beneath Africa and Iceland, Science, 286, 1925–1928. Ritzmann, O., N. Mërcklin, J. I. Faleide, H. Bungum, W. D. Mooney, and S. T. Detweiler (2007), A three-dimensional geophysical model of the crust in the Barents Sea region: Model construction and basement characterization, Geophys. J. Int., 170(1), 417–435. Romanowicz, B. (2009), The thickness of tectonic plates, Science, 324, 474–476. Schaefer, J. F., L. Boschi, T. W. Becker, and E. Kissling (2011), Radial anisotropy in the European mantle: Tomographic studies explored in terms of mantle flow, Geophys. Res. Lett., 38, L23304, doi:10.1029/ 2011GL049687. Schivardi, R., and A. Morelli (2009), Surface wave tomography in the European and Mediterranean region, Geophys. J. Int., 177, 1050–1066. Schivardi, R., and A. Morelli (2011), EPmantle: A three-dimensional transversely isotropic model of the upper mantle under the European Plate, Geophys. J. Int., 185, 469–484. Schmid, C., S. van der Lee, J. C. VanDecar, E. R. Engdhal, and D. Giardini (2008), Three-dimensional S velocity of the mantle in the Africa-Eurasia plate boundary region from phase arrival times and regional waveforms, J. Geophys. Res., 113, B03306, doi:10.1029/2005JB004193. 0148-0227 http://hdl.handle.net/2122/8056 http://www.agu.org/pubs/crossref/2012/2012JB009149.shtml doi:10.1029/2012JB009149 restricted Europe GRACE density-velocity scaling relationship dynamic topography surface waves upper mantle density 04. Solid Earth::04.01. Earth Interior::04.01.01. Composition and state 04. Solid Earth::04.03. Geodesy::04.03.03. Gravity and isostasy 04. Solid Earth::04.06. Seismology::04.06.07. Tomography and anisotropy 04. Solid Earth::04.07. Tectonophysics::04.07.02. Geodynamics 05. General::05.01. Computational geophysics::05.01.03. Inverse methods article 2012 ftingv https://doi.org/10.1029/2012JB009149 2022-07-29T06:06:19Z We here exploit fundamental mode Rayleigh and Love seismic wave information and the high resolution satellite global gravity model GGM02C to obtain a 1° × 1° 3-D image of: (a) upper-mantle isotropic shear-wave speeds; (b) densities; and (c) density-vS coupling below the European plate (20°N–90°N) (40°W–70°E). The 3-D image of the density-vS coupling provides unprecedented detail of information on the compositional and thermal contributions to density structures. The accurate and high-resolution crustal model allows us to compute a reliable residual topography to understand the dynamic implications of our models. The correlation between residual topography and mantle residual gravity anomalies defines three large-scale regions where upper mantle dynamics produce surface expression: the East European Craton; the eastern side of the Arabian Plate; and the Mediterranean Basin. The effects of mantle convection are also clearly visible at: (1) the Eastern Sirt Embayment; (2) the West African Craton northern margins; (3) the volcanically active region of the Canarian Archipelago; (4) the northern edge of the Central European Volcanic Province; and (5) the Northeastern part of the Atlantic Ocean, between Greenland and Iceland. Strong connections are observed among areas of weak radial anisotropy and areas where the mantle dynamics show surface expression. Although both thermal and additional dependencies have been incorporated into the density model, convective down-welling in the mantle below the East European Craton is required to explain the strong correlation between the estimated negative mantle residual anomalies and the negative residual topography. DATEC MERG-CT-2007-046522 and NERIES INFRAST-2.1-026130 Published B09401 3.3. Geodinamica e struttura dell'interno della Terra JCR Journal restricted Article in Journal/Newspaper Greenland Iceland Earth-Prints (Istituto Nazionale di Geofisica e Vulcanologia) Greenland Journal of Geophysical Research: Solid Earth 117 B9