Early and middle Miocene Antarctic glacial history from the sedimentary facies distribution in the AND-2A drill hole, Ross Sea, Antarctica

In 2007, the Antarctic Geological Drilling Program (ANDRILL) drilled 1138.54 m of strata ~10 km off the East Antarctic coast, includ ing an expanded early to middle Miocene succession not previously recovered from the Antarctic continental shelf. Here, we pre sent a facies model, distribution, and p...

Full description

Bibliographic Details
Published in:Geological Society of America Bulletin
Main Authors: Passchier, S., Browne, G., Field, B., Fielding, C. R., Krissek, L. A., Panter, K., Pekar, S. F., ANDRILL-SMS Science Team
Other Authors: Passchier, S.; Department of Earth and Environmental Studies, Montclair State University, Montclair, New Jersey 07043, USA, Browne, G.; GNS Science, PO Box 30-368, Lower Hutt 5040, New Zealand, Field, B.; GNS Science, PO Box 30-368, Lower Hutt 5040, New Zealand, Fielding, C. R.; Department of Earth and Atmospheric Sciences, University of Nebraska, Lincoln, Nebraska 68588, USA, Krissek, L. A.; School of Earth Sciences, The Ohio State University, Columbus, Ohio 43210, USA, Panter, K.; Department of Geology, Bowling Green State University, Bowling Green, Ohio 43403, USA, Pekar, S. F.; School of Earth and Environmental Sciences, Queens College, City University of New York, Flushing, New York 11367, USA, ANDRILL-SMS Science Team,; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Roma2, Roma, Italia, Department of Earth and Environmental Studies, Montclair State University, Montclair, New Jersey 07043, USA, GNS Science, PO Box 30-368, Lower Hutt 5040, New Zealand, Department of Earth and Atmospheric Sciences, University of Nebraska, Lincoln, Nebraska 68588, USA, School of Earth Sciences, The Ohio State University, Columbus, Ohio 43210, USA, Department of Geology, Bowling Green State University, Bowling Green, Ohio 43403, USA, School of Earth and Environmental Sciences, Queens College, City University of New York, Flushing, New York 11367, USA, Istituto Nazionale di Geofisica e Vulcanologia, Sezione Roma2, Roma, Italia
Format: Article in Journal/Newspaper
Language:English
Published: Geological Society of America 2011
Subjects:
Online Access:http://hdl.handle.net/2122/7528
https://doi.org/10.1130/B30334.1
id ftingv:oai:www.earth-prints.org:2122/7528
record_format openpolar
institution Open Polar
collection Earth-Prints (Istituto Nazionale di Geofisica e Vulcanologia)
op_collection_id ftingv
language English
topic ANDRILL-SMS
Miocene
Ross Sea
Antarctica
03. Hydrosphere::03.01. General::03.01.06. Paleoceanography and paleoclimatology
04. Solid Earth::04.04. Geology::04.04.10. Stratigraphy
04. Solid Earth::04.05. Geomagnetism::04.05.06. Paleomagnetism
spellingShingle ANDRILL-SMS
Miocene
Ross Sea
Antarctica
03. Hydrosphere::03.01. General::03.01.06. Paleoceanography and paleoclimatology
04. Solid Earth::04.04. Geology::04.04.10. Stratigraphy
04. Solid Earth::04.05. Geomagnetism::04.05.06. Paleomagnetism
Passchier, S.
Browne, G.
Field, B.
Fielding, C. R.
Krissek, L. A.
Panter, K.
Pekar, S. F.
ANDRILL-SMS Science Team
Early and middle Miocene Antarctic glacial history from the sedimentary facies distribution in the AND-2A drill hole, Ross Sea, Antarctica
topic_facet ANDRILL-SMS
Miocene
Ross Sea
Antarctica
03. Hydrosphere::03.01. General::03.01.06. Paleoceanography and paleoclimatology
04. Solid Earth::04.04. Geology::04.04.10. Stratigraphy
04. Solid Earth::04.05. Geomagnetism::04.05.06. Paleomagnetism
description In 2007, the Antarctic Geological Drilling Program (ANDRILL) drilled 1138.54 m of strata ~10 km off the East Antarctic coast, includ ing an expanded early to middle Miocene succession not previously recovered from the Antarctic continental shelf. Here, we pre sent a facies model, distribution, and paleoclimatic interpretation for the AND-2A drill hole, which enable us, for the fi rst time, to reconstruct periods of early and middle Miocene glacial advance and retreat and paleo environmental changes at an ice-proximal site. Three types of facies associations can be recognized that imply signifi cantly different paleoclimatic interpretations. (1) A diamictite-dominated facies association represents glacially dominated depositional environments, including subglacial environments, with only brief intervals where ice-free coasts existed, and periods when the ice sheet was periodically larger than the modern ice sheet. (2) A stratified diamictite and mudstone facies association includes facies characteristic of open-marine to iceberg-infl uenced depositional environments and is more consistent with a very dynamic ice sheet, with a grounding line south of the modern position. (3) A mudstone-dominated facies association generally lacks diamictites and was produced in a glacially infl uenced hemipelagic depositional environment. Based on the distribution of these facies associations, we can conclude that the Antarctic ice sheets were dynamic, with grounding lines south of the modern location at ca. 20.1–19.6 Ma and ca. 19.3–18.7 Ma and during the Miocene climatic optimum, ca. 17.6–15.4 Ma, with ice-sheet and sea-ice minima at ca. 16.5–16.3 Ma and ca. 15.7–15.6 Ma. While glacial minima at ca. 20.1–19.6 Ma and ca. 19.3–18.7 Ma were characterized by temperate margins, an increased abundance of gravelly facies and diatomaceous siltstone and a lack of meltwater plume deposits suggest a cooler and drier climate with polythermal conditions for the Miocene climatic optimum (ca. 17.6–15.4 Ma). Several periods of major ice growth ...
author2 Passchier, S.; Department of Earth and Environmental Studies, Montclair State University, Montclair, New Jersey 07043, USA
Browne, G.; GNS Science, PO Box 30-368, Lower Hutt 5040, New Zealand
Field, B.; GNS Science, PO Box 30-368, Lower Hutt 5040, New Zealand
Fielding, C. R.; Department of Earth and Atmospheric Sciences, University of Nebraska, Lincoln, Nebraska 68588, USA
Krissek, L. A.; School of Earth Sciences, The Ohio State University, Columbus, Ohio 43210, USA
Panter, K.; Department of Geology, Bowling Green State University, Bowling Green, Ohio 43403, USA
Pekar, S. F.; School of Earth and Environmental Sciences, Queens College, City University of New York, Flushing, New York 11367, USA
ANDRILL-SMS Science Team,; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Roma2, Roma, Italia
Department of Earth and Environmental Studies, Montclair State University, Montclair, New Jersey 07043, USA
GNS Science, PO Box 30-368, Lower Hutt 5040, New Zealand
Department of Earth and Atmospheric Sciences, University of Nebraska, Lincoln, Nebraska 68588, USA
School of Earth Sciences, The Ohio State University, Columbus, Ohio 43210, USA
Department of Geology, Bowling Green State University, Bowling Green, Ohio 43403, USA
School of Earth and Environmental Sciences, Queens College, City University of New York, Flushing, New York 11367, USA
Istituto Nazionale di Geofisica e Vulcanologia, Sezione Roma2, Roma, Italia
format Article in Journal/Newspaper
author Passchier, S.
Browne, G.
Field, B.
Fielding, C. R.
Krissek, L. A.
Panter, K.
Pekar, S. F.
ANDRILL-SMS Science Team
author_facet Passchier, S.
Browne, G.
Field, B.
Fielding, C. R.
Krissek, L. A.
Panter, K.
Pekar, S. F.
ANDRILL-SMS Science Team
author_sort Passchier, S.
title Early and middle Miocene Antarctic glacial history from the sedimentary facies distribution in the AND-2A drill hole, Ross Sea, Antarctica
title_short Early and middle Miocene Antarctic glacial history from the sedimentary facies distribution in the AND-2A drill hole, Ross Sea, Antarctica
title_full Early and middle Miocene Antarctic glacial history from the sedimentary facies distribution in the AND-2A drill hole, Ross Sea, Antarctica
title_fullStr Early and middle Miocene Antarctic glacial history from the sedimentary facies distribution in the AND-2A drill hole, Ross Sea, Antarctica
title_full_unstemmed Early and middle Miocene Antarctic glacial history from the sedimentary facies distribution in the AND-2A drill hole, Ross Sea, Antarctica
title_sort early and middle miocene antarctic glacial history from the sedimentary facies distribution in the and-2a drill hole, ross sea, antarctica
publisher Geological Society of America
publishDate 2011
url http://hdl.handle.net/2122/7528
https://doi.org/10.1130/B30334.1
geographic Antarctic
Ross Sea
The Antarctic
geographic_facet Antarctic
Ross Sea
The Antarctic
genre Annals of Glaciology
Antarc*
Antarctic
Antarctic Science
Antarctica
Ice Sheet
Iceberg*
Journal of Glaciology
Ross Sea
Sea ice
genre_facet Annals of Glaciology
Antarc*
Antarctic
Antarctic Science
Antarctica
Ice Sheet
Iceberg*
Journal of Glaciology
Ross Sea
Sea ice
op_relation GSA Bulletin
11-12 / 123 (2011)
Acton, G., Florindo, F., Jovane, L., Lum, B., Ohneiser, C., Sagnotti, L., Strada, E., Verosub, K.L., Wilson, G.S., and the ANDRILL-SMS Science Team, 2008, Preliminary integrated chronostratigraphy of the AND-2A Core, ANDRILL Southern McMurdo Sound Project, Antarctica, in Harwood, D.M., Florindo, F., Talarico, F., and Levy, R.H., eds., Studies from the ANDRILL, Southern McMurdo Sound Project, Antarctica: Terra Antartica, v. 15, p. 211–220. Bamber, J., Riva, R.E.M., Vermeersen, B.L.A., and LeBrocq , A.M., 2009, Reassessment of the potential sea-level rise from a collapse of the West Antarctic Ice Sheet: Science, v. 324, no. 5929, p. 901–903, doi:10.1126/ science.1169335. Barrett, P.J., 2007, Cenozoic climate and sea level history from glacimarine strata off the Victoria Land coast, Cape Roberts Project, Antarctica, in Hambrey, M.J., Christoffersen, P., Glasser, N.F., and Hubbart, B., eds., Glacial Processes and Products: International Association of Sedimentologists Special Publication 39, p. 259–287. Barrett, P.J., and Hambrey, M.J., 1992, Plio-Pleistocene sedimentation in Ferrar Fjord, Antarctica: Sedimentology, v. 39, p. 109–123, doi:10.1111/j.1365-3091.1992. tb01025.x. Benn, D., 1996, Subglacial and subaqueous processes near a glacier grounding line: Sedimentological evidence from a former ice-dammed lake, Achnasheen Scotland: Boreas, v. 25, p. 23–36, doi:10.1111/ j.1502-3885.1996.tb00832.x. Billups, K., and Schrag, D.P., 2002, Paleotemperatures and ice volume of the past 27 Myr revisited with paired Mg/Ca and 18O/16O measurements on benthic foraminif era: Paleoceanography, v. 17, no. 1, PA000567, doi:10.1029/2000PA000567. Boulton, G.S., 1990, Sedimentary and sea level changes during glacial cycles and their control on glacimarine facies architecture, in Dowdeswell, J.A., and Scourse, J.D., eds., Glaciomarine Environments: Processes and Sediments: Geological Society of London Special Publication 53, p. 15–52. Cai, J., Powell, R.D., Cowan, E.A., and Carlson, P.R., 1997, Lithofacies and seismic-refl ection interpretation of temperate glacimarine sedimentation in Tarr Inlet, Glacier Bay, Alaska: Marine Geology, v. 143, p. 5–37, doi:10.1016/S0025-3227(97)00088-1. Cowan, E.A., Cai, J., Powell, R.D., Clark, J.D., and Pitcher, J.N., 1997, Temperate glacimarine varves: An example of Disenchantment Bay, southern Alaska: Journal of Sedimentary Research, v. 67, p. 536–549. Cowan, E.A., Seramur, K.C., Cai, J., and Powell, R.D., 1999, Cyclic sedimentation produced by fl uctuation in meltwater discharge, tides, and marine productivity in an Alaskan fjord: Sedimentology, v. 46, p. 1109– 1126, doi:10.1046/j.1365-3091.1999.00267.x. DeConto, R.M., and Pollard, D., 2003, Rapid Cenozoic glaciation of Antarctica induced by declining atmospheric CO2: Nature, v. 421, p. 245–249, doi:10.1038/ nature01290. DeConto, R., Pollard, D., and Harwood, D., 2007, Sea ice feedback and Cenozoic evolution of Antarctic climate and ice sheets: Paleoceanography, v. 22, p. PA3214, doi:10.1029/2006PA001350. Del Carlo, P., Panter, K.S., Bassett, K., Bracciali, L., Di Vincenzo, G., and Rocchi, S., 2009, The upper lithostratigraphic unit of ANDRILL AND-2A core (Southern McMurdo Sound, Antarctica): Local volcanic sources, paleoenvironmental implications and subsidence in the western Victoria Land Basin: Global and Planetary Change, v. 69, p. 142–161, doi:10.1016/ j.gloplacha.2009.09.002. Di Vincenzo, G., Bracciali, L., Del Carlo, P., Panter, K., and Rocchi, S., 2010, 40Ar/39Ar laser dating of vol canogenic products from the AND-2A core (ANDRILL Southern McMurdo Sound Project, Antarctica): Bulletin of Volcanology, v. 72, p. 487–505, doi:10.1007/ s00445-009-0337-z. Domack, E.W., and Harris, P., 1998, A new depositional model for ice shelves based upon sediment cores from the Ross Sea and the MacRobertson shelf, Antarctica: Annals of Glaciology, v. 27, p. 281–284. Domack, E.W., Duran, D., Leventer, A., Ishman, S., Doane, S., McCallum, S., Amblas, D., Ring, J., Gilbert, R., and Prentice, M., 2005, Stability of the Larsen B ice shelf on the Antarctic Peninsula during the Holocene Epoch: Nature, v. 436, p. 681–685, doi:10.1038/nature03908. Dowdeswell, J.A., Elverhøi, A., and Spielhagen, R., 1998, Glacimarine sedimentary processes and facies on the polar North Atlantic margins: Quaternary Science Reviews, v. 17, p. 243–272, doi:10.1016/S0277-3791 (97)00071-1. Ehrmann, W., Setti, M., and Marinoni, L., 2005, Clay minerals in Cenozoic sediments off Cape Roberts (McMurdo Sound, Antarctica) reveal palaeoclimatic history: Palaeo geography, Palaeoclimatology, Palaeoecology, v. 229, p. 187–211, doi:10.1016/j.palaeo.2005.06.022. Etienne, J.L., Glasser, N.F., and Hambrey, M.J., 2003, Proglacial sediment-landform associations of a polythermal glacier: Storglaciären, northern Sweden: Geografi ska Annaler, v. 85, no. A, p. 149–164. Evans, J., and Pudsey, C.J., 2002, Sedimentation associated with Antarctic Peninsula ice shelves: Implications for palaeoenvironmental reconstructions of glacimarine sediments: Journal of the Geological Society of London, v. 159, no. 3, p. 233–237, doi:10.1144/0016-764901-125. Fielding, C.R., Whittaker, J., Henrys, S.A., Wilson, T.J., and Naish, T.R., 2008a, Seismic facies and stratigraphy of the Cenozoic succession in McMurdo Sound, Antarctica: Implications for tectonic, climatic and glacial history: Palaeogeography, Palaeoclimatology, Palaeoecology, v. 260, p. 8–29, doi:10.1016/ j.palaeo.2007.08.016. Fielding, C.R., Atkins, C.B., Bassett, K.N., Browne, G.H., Dunbar, G.B., Field, B.D., Frank, T.D., Krissek, L.A., Panter, K., Passchier, S., Pekar, S.F., and the ANDRILL-SMS Science Team, 2008b, Sedimentology and stratigraphy of the AND-2A core, ANDRILL Southern McMurdo Sound, Project, Antarctica: Terra Antartica, v. 15, p. 77–112. Florindo, F., Bohaty, S.M., Erwin, P.S., Richter, C., Roberts , A.P., Whalen, P.A., and Whitehead, J.M., 2003, Magnetobiostratigraphic chronology and palaeoenvironmental history of Cenozoic sequences from ODP Sites 1165 and 1166, Prydz Bay, Antarctica: Palaeogeography, Palaeoclimatology, Palaeoecology, v. 198, p. 69–100, doi:10.1016/S0031-0182(03)00395-X. Griffi th, T.W., and Anderson, J.B., 1989, Climatic control of sedimentation in bays and fjords of the northern Antarctic Peninsula: Marine Geology, v. 85, p. 181–204, doi:10.1016/0025-3227(89)90153-9. Hambrey, M.J., and McKelvey, B.C., 2000, Major Neogene fl uctuations of the East Antarctic Ice Sheet: Stratigraphic evidence from the Lambert glacier region: Geology, v. 28, p. 887–890, doi:10.1130/0091-7613(2000)28 <887:MNFOTE>2.0.CO;2. Hambrey, M.J., Bennett, M.R., Dowdeswell, J.A., Glasser, N.F., and Huddard, D., 1999, Debris entrainment and transfer in polythermal valley glaciers: Journal of Glaciology, v. 149, no. 45, p. 69–86. Harwood, D.M., 1986, Diatom Biostratigraphy and Paleoecology with a Cenozoic History of Antarctic Ice Sheets [Ph.D. thesis]: Columbus, Ohio, The Ohio State University, 592 p. Harwood, D.M., and Webb, P.-N., 1998, Glacial transport of diatoms in the Antarctic Sirius Group: Pliocene refrigerator: GSA Today, v. 8, no. 4, p. 1–8. Hemer, M.A., Post, A.L., O’Brien, P.E., Craven, M., Truswell, E.M., Roberts, D., and Harris, P.T., 2007, Sedimentological signatures of the sub–Amery Ice Shelf circulation: Antarctic Science, v. 19, p. 497–506, doi:10.1017/S0954102007000697. Holbourn, A., Kuhnt, W., Schulz, M., and Erlenkeuser, H., 2005, Impacts of orbital forcing and atmospheric carbon dioxide on Miocene ice-sheet expansion: Nature, v. 438, p. 483–487, doi:10.1038/nature04123. Ishman, S.E., and Rieck, H.J., 1992, A late Neogene Antarctic glacio-eustatic record, Victoria Land Basin margin, Antarctica: Antarctic Research Series, v. 56, p. 327–348. Joseph, L.H., Rea, D.K., van der Pluijm, B.A., and Gleason , D.A., 2002, Antarctic environmental variability since the late Miocene: ODP Site 745, the East Kerguelen sediment drift: Earth and Planetary Science Letters, v. 201, p. 127–142, doi:10.1016/ S0012-821X(02)00661-1. Khatwa, A., and Tulaczyk, S., 2001, Microstructural interpretations of modern and Pleistocene subglacially deformed sediments: The relative role of parent material and subglacial processes: Journal of Quaternary Science, v. 16, no. 6, p. 507–517, doi:10.1002/jqs.609. Lear, C.H., Elderfi eld, H., and Wilson, P.A., 2000, Cenozoic deep-sea temperatures and global ice volumes from Mg/Ca in benthic foraminiferal calcite: Science, v. 287, p. 269–272, doi:10.1126/science.287.5451.269. Lear, C.H., Rosenthal, Y., Coxall, H.K., and Wilson, P.A., 2004, Late Eocene to early Miocene ice-sheet dynamics and the global carbon cycle: Paleoceanography, v. 19, no. 4, p. PA4015, doi:10.1029/2004PA001039. Lear, C.H., Bailey, T.R., Pearson, P.N., Coxall, H.K., and Rosenthal, Y., 2008, Cooling and ice growth across the Eocene-Oligocene transition: Geology, v. 36, p. 251– 254, doi:10.1130/G24584A.1. Lewis, A.R., Marchant, D.R., Ashworth, A.C., Hemming, S.R., and Machlus, M.L., 2007, Major middle Miocene global climate change: Evidence from East Antarctica and the Transantarctic Mountains: Geological Society of America Bulletin, v. 119, p. 1449–1461. Licht, K.J., Dunbar, N.W., Andrews, J.T., and Jennings, A.E., 1999, Distinguishing subglacial till and glacial marine diamictons in the western Ross Sea, Antarctica: Implications for a Last Glacial Maximum grounding line: Geological Society of America Bulletin, v. 111, p. 91–103, doi:10.1130/0016-7606(1999)111 <0091:DSTAGM>2.3.CO;2. Lowe, A.L., and Anderson, J.B., 2002, Late Quaternary advance and retreat of the West Antarctic Ice Sheet in Pine Island Bay, Antarctica: Quaternary Science Reviews, v. 21, p. 1879–1897, doi:10.1016/ S0277-3791(02)00006-9. Lønne, I., 1995, Sedimentary facies and depositional architecture of ice-contact glaciomarine systems: Sedimentary Geology, v. 98, p. 13–43, doi:10.1016/0037-0738 (95)00025-4. MacKiewicz, N.E., Powell, R.D., Carlson, P.R., and Molnia , B.F., 1984, Interlaminated ice-proximal glacimarine sediments in Muir Inlet, Alaska: Marine Geology, v. 57, no. 1–4, p. 113–147, doi:10.1016/0025-3227 (84)90197-X. Marchant, D.R., Denton, G.H., Sugden, D.E., and Swisher, C.C., III, 1993, Miocene glacial stratigraphy and landscape evolution of the western Asgard Range, Antarctica: Geografi ska Annaler, v. 75A, no. 4, p. 303–330, doi:10.2307/521205. McCarroll, D., and Rijsdijk, K., 2003, Deformation styles as a key for unlocking glacial depositional environments: Journal of Quaternary Science, v. 18, p. 473–489, doi:10.1002/jqs.780. McKay, R.M., Dunbar, G.B., Naish, T., Barrett, P.J., Carter, L., and Harper, M., 2008, Retreat history of the Ross Ice Sheet (Shelf) since the Last Glacial Maximum from deep-basin sediment cores around Ross Island: Palaeogeography, Palaeoclimatology, Palaeoecology, v. 260, p. 245–261, doi:10.1016/j.palaeo.2007.08.015. McKay, R.M., Browne, G., Carter, L., Cowan, E., Dunbar, G., Krissek, L., Naish, T., Powell, R., Reed, J., Talarico, F., and Wilch, T., 2009, The stratigraphic signature of the late Cenozoic Antarctica Ice Sheets in the Ross Embayments: Geological Society of America Bulletin, v. 121, p. 1537–1561, doi:10.1130/B26540.1. McKelvey, B.C., 1981, The lithologic logs of DVDP cores 10 and 11, eastern Taylor Valley, in McGinnis, L.D., ed., Dry Valley Drilling Project: Antarctic Research Series : Washington, D.C., American Geophysical Union, p. 63–94. McKelvey, B.C., 1982, Late Cenozoic marine and terrestrial glacial sedimentation in eastern Taylor Valley, Southern Victoria Land, in Craddock, C., ed., Proceedings of the Third Symposium on Antarctic Geology and Geophysics: Madison, Wisconsin, The University of Wisconsin Press, p. 1109–1116. Miller, K.G., Wright, J.D., and Fairbanks, R.G., 1991, Unlocking the ice house: Oligocene-Miocene oxygen isotopes, eustasy, and margin erosion: Journal of Geophysical Research, v. 96, p. 6829–6848, doi:10.1029/ 90JB02015. Miller, K.G., Mountain, G.S., the Leg 150 Shipboard Party, and Members of the New Jersey Coastal Plain Drilling Project, 1996, Drilling and dating New Jersey Oligocene- Miocene sequences: Ice volume, global sea level, and Exxon records: Science, v. 271, p. 1092–1094. Miller, K.G., Kominz, M.A., Browning, J.V., Wright, J.D., Mountain, G.S., Katz, M.E., Sugarman, P.J., Cramer, B.S., Christie-Blick, N., and Pekar, S.F., 2005, The Phanerozoic record of global sea-level change: Science, v. 310, p. 1293–1298, doi:10.1126/science.1116412. Moncrieff, A.C.M., 1989, Classifi cation of poorly-sorted sedimentary rocks: Sedimentary Geology, v. 65, p. 191–194, doi:10.1016/0037-0738(89)90015-8. Naish, T.R., and 32 others, 2001, Orbitally induced oscillations in the East Antarctic Ice Sheet at the Oligocene/ Miocene boundary: Nature, v. 413, p. 719–723, doi:10.1038/35099534. Naish, T., and 55 others, 2009, Obliquity-paced Pliocene West Antarctic Ice Sheet oscillations: Nature, v. 458, p. 322– 328, doi:10.1038/nature07867. Ó Cofaigh, C., and Dowdeswell, J.A., 2001, Laminated sediments in glacimarine environments: Diagnostic criteria for their interpretation: Quaternary Science Reviews, v. 20, p. 1411–1436. Ó Cofaigh, C., Dowdeswell, J.A., and Grobe, H., 2001, Holocene glacimarine sedimentation, inner Scoresby Sund, East Greenland: The infl uence of fast-fl owing ice-sheet outlet glaciers: Marine Geology, v. 175, p. 103–129. Pagani, M., Zachos, J., Freeman, K.H., Bohaty, S., and Tipple , B., 2005, Marked change in atmospheric carbon dioxide concentrations during the Oligocene: Science, v. 309, p. 600–603, doi:10.1126/science.1110063. Panter, K.S., Talarico, F., Bassett, K., Del Carlo, P., Field, B., Frank, T., Hoffman, S., Kuhn, G., Reichelt, L., Sandroni, S., Tavini, M., Bracciali, L., Cornamusini, G., von Eynatten, H., and Rocchi, R., 2008, Petrologic and geochemical composition of the AND-2A core, ANDRILL Southern McMurdo Sound Project, Antarctica, in Harwood, D.M., Florindo, F., Talarico, F., and Levy, R.H., eds., Studies from the ANDRILL, Southern McMurdo Sound Project, Antarctica: Terra Antarctica, v. 15, p. 147–192. Passchier, S., and Krissek, L.A., 2008, Oligocene–Miocene Antarctic continental weathering record and paleoclimatic implications, Cape Roberts Drilling Project, Ross Sea, Antarctica: Palaeogeography, Palaeoclimatology, Palaeoecology, v. 260, p. 30–40, doi:10.1016/ j.palaeo.2007.08.012. Passchier, S., Wilson, T.J., and Paulsen, T.S., 1998, Origin of breccias in the CRP-1 core: Terra Antartica, v. 5, no. 3, p. 401–409. Passchier, S., O’Brien, P.E., Damuth, J.E., Januszczack, N., Handwerger, D.A., and Whitehead, J.M., 2003, Pliocene-Pleistocene glaciomarine sedimentation in eastern Prydz Bay and development of the Prydz trough-mouth fan, ODP Sites 1166 and 1167, East Antarctica: Marine Geology, v. 199, p. 179–305. Pekar, S.F., and DeConto, R.M., 2006, High-resolution icevolume estimates for the early Miocene: Evidence for a dynamic ice sheet in Antarctica: Palaeogeography, Palaeoclimatology, Palaeoecology, v. 231, p. 101–109, doi:10.1016/j.palaeo.2005.07.027. Powell, R.D., 1981, Sedimentation conditions in Taylor Valley, Antarctica, inferred from textural analysis of DVDP cores, in McGinnis, L.D., ed., Dry Valley Drilling Project: Antarctic Research Series: Washington, D.C., American Geophysical Union, p. 331–349. Powell, R.D., and Cooper, J.M., 2002, A glacial sequence stratigraphic model for temperate, glaciated continental shelves, in Dowdeswell, J.A., and Ó Cofaigh, C., eds., Glacier-Infl uenced Sedimentation on High- Latitude Continental Margins: Geological Society of London Special Publication 203, p. 215–244. Powell, R.D., and Molnia, B.F., 1989, Glacimarine sedimentary processes, facies and morphology of the southsoutheast Alaska shelf and fjords: Marine Geology, v. 85, p. 359–390, doi:10.1016/0025-3227(89)90160-6. Prentice, M.L., Bockheim, J.G., Wilson, S.C., Burckle, L.H., Hodell, D.A., Schlüchter, C., and Kellogg, D.E., 1993, Late Neogene Antarctic glacial history: Evidence from Central Wright Valley, in Kennett, J.P., and Warnke, D.A., eds., The Antarctic Paleoenvironment: A Perspective on Global Change, Part 2: Antarctic Research Series: Washington, D.C., American Geophysical Union, p. 207–250. Rebesco, M., Camerlenghi, A., Geletti, R., and Canals, M., 2006, Margin architecture reveals the transition to the modern Antarctic ice sheet ca. 3 Ma: Geology, v. 34, no. 4, p. 301–304, doi:10.1130/G22000.1. Riddle, M.J., Craven, M., Goldsworthy, P.M., and Carsey, F., 2007, A diverse benthic assemblage 100 km from open water under the Amery Ice Shelf, Antarctica: Paleoceanography, v. 22, p. PA1204, doi:10.1029/ 2006PA001327. Shevenell, A.E., Kennett, J.P., and Lea, D.W., 2004, Middle Miocene Southern Ocean cooling and Antarctic cryosphere expansion: Science, v. 305, p. 1766–1770, doi:10.1126/science.1100061. Shevenell, A.E., Kennett, J.P., and Lea, D.W., 2008, Middle Miocene ice sheet dynamics, deep-sea temperatures, and carbon cycling: A Southern Ocean perspective: Geochemistry, Geophysics, Geosystems, v. 9, no. 2, Q02006, p. 1–14. Sugden, D., and Denton, G., 2004, Cenozoic landscape evolution of the Convoy Range to Mackay Glacier area, Transantarctic Mountains: Onshore to offshore synthesis: Geological Society of America Bulletin, v. 116, p. 840–857, doi:10.1130/B25356.1. Svendsen, J.I., Mangerud, J., Elverhøi, A., Solheim, A., and Schüttenhelm, R.T.E., 1992, The late Weichselian glacial maximum on western Spitsbergen inferred from offshore sediment cores: Marine Geology, v. 104, p. 1–17, doi:10.1016/0025-3227(92)90081-R. Tripati, A.K., Roberts, C.D., and Eagle, R.A., 2009, Coupling of CO2 and ice sheet stability over major climate transitions of the last 20 million years: Science, v. 326, no. 5958, p. 1394–1397, doi:10.1126/ science.1178296. van der Meer, J.J.M., 1993, Microscopic evidence of subglacial deformation: Quaternary Science Reviews, v. 12, p. 553–587, doi:10.1016/0277-3791(93)90069-X. Warny, S., Askin, R.A., Hannah, M.J., Mohr, B.A.R., Raine, J.I., Harwood, D.M., Florindo, F., and the SMS Science Team, 2009, Palynomorphs from a sediment core reveal a sudden remarkably warm Antarctica during the middle Miocene: Geology, v. 37, no. 10, p. 955– 958, doi:10.1130/G30139A.1. Webb, P.-N., and Wrenn, J.H., 1982, Upper Cenozoic micropaleontology and biostratigraphy of eastern Taylor Valley, Antarctica, in Craddock, C., ed., Proceedings of the Third Symposium on Antarctic Geology and Geo physics: Madison, Wisconsin, The University of Wisconsin Press, p. 1117–1122. Whitehead, J.M., Ehrmann, W., Harwood, D.M., Hillenbrand, C.-D., Quilty, P.Q., Hart, C., Taviani, M., Thorn, V., and McMinn, A., 2006, Late Miocene paleoenvironment of the Lambert graben embayment, East Antarctica, evident from: Mollusc paleontology, sedimentology and geochemistry: Global and Planetary Change, v. 50, no. 3–4, p. 127–147. Wilson, G., Pekar, S., Naish, T., Passchier, S., and DeConto, R., 2009, The Oligocene-Miocene boundary—Antarctic climate response to orbital forcing, in Florindo, F., and Seigert, M., eds., Antarctic Climate Evolution: Developments in Earth & Environmental Sciences, Volume 8: Amsterdam, The Netherlands, Elsevier, p. 444–465. Zachos, J., Pagani, M., Sloan, L., Thomas, E., and Billups, K., 2001, Trends, rhythms, and aberrations in global climate: 65 Ma to present: Science, v. 292, p. 686–693. Zachos, J.C., Dickens, G.R., and Zeebe, R.E., 2008, An early Cenozoic perspective on greenhouse warming and carbon-cycle dynamics: Nature, v. 451, p. 279–283, doi:10.1038/nature06588.
http://hdl.handle.net/2122/7528
doi:10.1130/B30334.1
op_rights restricted
op_doi https://doi.org/10.1130/B30334.1
https://doi.org/10.1111/j.1365-3091.1992
container_title Geological Society of America Bulletin
container_volume 123
container_issue 11-12
container_start_page 2352
op_container_end_page 2365
_version_ 1766003932318924800
spelling ftingv:oai:www.earth-prints.org:2122/7528 2023-05-15T13:29:52+02:00 Early and middle Miocene Antarctic glacial history from the sedimentary facies distribution in the AND-2A drill hole, Ross Sea, Antarctica Passchier, S. Browne, G. Field, B. Fielding, C. R. Krissek, L. A. Panter, K. Pekar, S. F. ANDRILL-SMS Science Team Passchier, S.; Department of Earth and Environmental Studies, Montclair State University, Montclair, New Jersey 07043, USA Browne, G.; GNS Science, PO Box 30-368, Lower Hutt 5040, New Zealand Field, B.; GNS Science, PO Box 30-368, Lower Hutt 5040, New Zealand Fielding, C. R.; Department of Earth and Atmospheric Sciences, University of Nebraska, Lincoln, Nebraska 68588, USA Krissek, L. A.; School of Earth Sciences, The Ohio State University, Columbus, Ohio 43210, USA Panter, K.; Department of Geology, Bowling Green State University, Bowling Green, Ohio 43403, USA Pekar, S. F.; School of Earth and Environmental Sciences, Queens College, City University of New York, Flushing, New York 11367, USA ANDRILL-SMS Science Team,; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Roma2, Roma, Italia Department of Earth and Environmental Studies, Montclair State University, Montclair, New Jersey 07043, USA GNS Science, PO Box 30-368, Lower Hutt 5040, New Zealand Department of Earth and Atmospheric Sciences, University of Nebraska, Lincoln, Nebraska 68588, USA School of Earth Sciences, The Ohio State University, Columbus, Ohio 43210, USA Department of Geology, Bowling Green State University, Bowling Green, Ohio 43403, USA School of Earth and Environmental Sciences, Queens College, City University of New York, Flushing, New York 11367, USA Istituto Nazionale di Geofisica e Vulcanologia, Sezione Roma2, Roma, Italia 2011-11 http://hdl.handle.net/2122/7528 https://doi.org/10.1130/B30334.1 en eng Geological Society of America GSA Bulletin 11-12 / 123 (2011) Acton, G., Florindo, F., Jovane, L., Lum, B., Ohneiser, C., Sagnotti, L., Strada, E., Verosub, K.L., Wilson, G.S., and the ANDRILL-SMS Science Team, 2008, Preliminary integrated chronostratigraphy of the AND-2A Core, ANDRILL Southern McMurdo Sound Project, Antarctica, in Harwood, D.M., Florindo, F., Talarico, F., and Levy, R.H., eds., Studies from the ANDRILL, Southern McMurdo Sound Project, Antarctica: Terra Antartica, v. 15, p. 211–220. Bamber, J., Riva, R.E.M., Vermeersen, B.L.A., and LeBrocq , A.M., 2009, Reassessment of the potential sea-level rise from a collapse of the West Antarctic Ice Sheet: Science, v. 324, no. 5929, p. 901–903, doi:10.1126/ science.1169335. Barrett, P.J., 2007, Cenozoic climate and sea level history from glacimarine strata off the Victoria Land coast, Cape Roberts Project, Antarctica, in Hambrey, M.J., Christoffersen, P., Glasser, N.F., and Hubbart, B., eds., Glacial Processes and Products: International Association of Sedimentologists Special Publication 39, p. 259–287. Barrett, P.J., and Hambrey, M.J., 1992, Plio-Pleistocene sedimentation in Ferrar Fjord, Antarctica: Sedimentology, v. 39, p. 109–123, doi:10.1111/j.1365-3091.1992. tb01025.x. Benn, D., 1996, Subglacial and subaqueous processes near a glacier grounding line: Sedimentological evidence from a former ice-dammed lake, Achnasheen Scotland: Boreas, v. 25, p. 23–36, doi:10.1111/ j.1502-3885.1996.tb00832.x. Billups, K., and Schrag, D.P., 2002, Paleotemperatures and ice volume of the past 27 Myr revisited with paired Mg/Ca and 18O/16O measurements on benthic foraminif era: Paleoceanography, v. 17, no. 1, PA000567, doi:10.1029/2000PA000567. Boulton, G.S., 1990, Sedimentary and sea level changes during glacial cycles and their control on glacimarine facies architecture, in Dowdeswell, J.A., and Scourse, J.D., eds., Glaciomarine Environments: Processes and Sediments: Geological Society of London Special Publication 53, p. 15–52. Cai, J., Powell, R.D., Cowan, E.A., and Carlson, P.R., 1997, Lithofacies and seismic-refl ection interpretation of temperate glacimarine sedimentation in Tarr Inlet, Glacier Bay, Alaska: Marine Geology, v. 143, p. 5–37, doi:10.1016/S0025-3227(97)00088-1. Cowan, E.A., Cai, J., Powell, R.D., Clark, J.D., and Pitcher, J.N., 1997, Temperate glacimarine varves: An example of Disenchantment Bay, southern Alaska: Journal of Sedimentary Research, v. 67, p. 536–549. Cowan, E.A., Seramur, K.C., Cai, J., and Powell, R.D., 1999, Cyclic sedimentation produced by fl uctuation in meltwater discharge, tides, and marine productivity in an Alaskan fjord: Sedimentology, v. 46, p. 1109– 1126, doi:10.1046/j.1365-3091.1999.00267.x. DeConto, R.M., and Pollard, D., 2003, Rapid Cenozoic glaciation of Antarctica induced by declining atmospheric CO2: Nature, v. 421, p. 245–249, doi:10.1038/ nature01290. DeConto, R., Pollard, D., and Harwood, D., 2007, Sea ice feedback and Cenozoic evolution of Antarctic climate and ice sheets: Paleoceanography, v. 22, p. PA3214, doi:10.1029/2006PA001350. Del Carlo, P., Panter, K.S., Bassett, K., Bracciali, L., Di Vincenzo, G., and Rocchi, S., 2009, The upper lithostratigraphic unit of ANDRILL AND-2A core (Southern McMurdo Sound, Antarctica): Local volcanic sources, paleoenvironmental implications and subsidence in the western Victoria Land Basin: Global and Planetary Change, v. 69, p. 142–161, doi:10.1016/ j.gloplacha.2009.09.002. Di Vincenzo, G., Bracciali, L., Del Carlo, P., Panter, K., and Rocchi, S., 2010, 40Ar/39Ar laser dating of vol canogenic products from the AND-2A core (ANDRILL Southern McMurdo Sound Project, Antarctica): Bulletin of Volcanology, v. 72, p. 487–505, doi:10.1007/ s00445-009-0337-z. Domack, E.W., and Harris, P., 1998, A new depositional model for ice shelves based upon sediment cores from the Ross Sea and the MacRobertson shelf, Antarctica: Annals of Glaciology, v. 27, p. 281–284. Domack, E.W., Duran, D., Leventer, A., Ishman, S., Doane, S., McCallum, S., Amblas, D., Ring, J., Gilbert, R., and Prentice, M., 2005, Stability of the Larsen B ice shelf on the Antarctic Peninsula during the Holocene Epoch: Nature, v. 436, p. 681–685, doi:10.1038/nature03908. Dowdeswell, J.A., Elverhøi, A., and Spielhagen, R., 1998, Glacimarine sedimentary processes and facies on the polar North Atlantic margins: Quaternary Science Reviews, v. 17, p. 243–272, doi:10.1016/S0277-3791 (97)00071-1. Ehrmann, W., Setti, M., and Marinoni, L., 2005, Clay minerals in Cenozoic sediments off Cape Roberts (McMurdo Sound, Antarctica) reveal palaeoclimatic history: Palaeo geography, Palaeoclimatology, Palaeoecology, v. 229, p. 187–211, doi:10.1016/j.palaeo.2005.06.022. Etienne, J.L., Glasser, N.F., and Hambrey, M.J., 2003, Proglacial sediment-landform associations of a polythermal glacier: Storglaciären, northern Sweden: Geografi ska Annaler, v. 85, no. A, p. 149–164. Evans, J., and Pudsey, C.J., 2002, Sedimentation associated with Antarctic Peninsula ice shelves: Implications for palaeoenvironmental reconstructions of glacimarine sediments: Journal of the Geological Society of London, v. 159, no. 3, p. 233–237, doi:10.1144/0016-764901-125. Fielding, C.R., Whittaker, J., Henrys, S.A., Wilson, T.J., and Naish, T.R., 2008a, Seismic facies and stratigraphy of the Cenozoic succession in McMurdo Sound, Antarctica: Implications for tectonic, climatic and glacial history: Palaeogeography, Palaeoclimatology, Palaeoecology, v. 260, p. 8–29, doi:10.1016/ j.palaeo.2007.08.016. Fielding, C.R., Atkins, C.B., Bassett, K.N., Browne, G.H., Dunbar, G.B., Field, B.D., Frank, T.D., Krissek, L.A., Panter, K., Passchier, S., Pekar, S.F., and the ANDRILL-SMS Science Team, 2008b, Sedimentology and stratigraphy of the AND-2A core, ANDRILL Southern McMurdo Sound, Project, Antarctica: Terra Antartica, v. 15, p. 77–112. Florindo, F., Bohaty, S.M., Erwin, P.S., Richter, C., Roberts , A.P., Whalen, P.A., and Whitehead, J.M., 2003, Magnetobiostratigraphic chronology and palaeoenvironmental history of Cenozoic sequences from ODP Sites 1165 and 1166, Prydz Bay, Antarctica: Palaeogeography, Palaeoclimatology, Palaeoecology, v. 198, p. 69–100, doi:10.1016/S0031-0182(03)00395-X. Griffi th, T.W., and Anderson, J.B., 1989, Climatic control of sedimentation in bays and fjords of the northern Antarctic Peninsula: Marine Geology, v. 85, p. 181–204, doi:10.1016/0025-3227(89)90153-9. Hambrey, M.J., and McKelvey, B.C., 2000, Major Neogene fl uctuations of the East Antarctic Ice Sheet: Stratigraphic evidence from the Lambert glacier region: Geology, v. 28, p. 887–890, doi:10.1130/0091-7613(2000)28 <887:MNFOTE>2.0.CO;2. Hambrey, M.J., Bennett, M.R., Dowdeswell, J.A., Glasser, N.F., and Huddard, D., 1999, Debris entrainment and transfer in polythermal valley glaciers: Journal of Glaciology, v. 149, no. 45, p. 69–86. Harwood, D.M., 1986, Diatom Biostratigraphy and Paleoecology with a Cenozoic History of Antarctic Ice Sheets [Ph.D. thesis]: Columbus, Ohio, The Ohio State University, 592 p. Harwood, D.M., and Webb, P.-N., 1998, Glacial transport of diatoms in the Antarctic Sirius Group: Pliocene refrigerator: GSA Today, v. 8, no. 4, p. 1–8. Hemer, M.A., Post, A.L., O’Brien, P.E., Craven, M., Truswell, E.M., Roberts, D., and Harris, P.T., 2007, Sedimentological signatures of the sub–Amery Ice Shelf circulation: Antarctic Science, v. 19, p. 497–506, doi:10.1017/S0954102007000697. Holbourn, A., Kuhnt, W., Schulz, M., and Erlenkeuser, H., 2005, Impacts of orbital forcing and atmospheric carbon dioxide on Miocene ice-sheet expansion: Nature, v. 438, p. 483–487, doi:10.1038/nature04123. Ishman, S.E., and Rieck, H.J., 1992, A late Neogene Antarctic glacio-eustatic record, Victoria Land Basin margin, Antarctica: Antarctic Research Series, v. 56, p. 327–348. Joseph, L.H., Rea, D.K., van der Pluijm, B.A., and Gleason , D.A., 2002, Antarctic environmental variability since the late Miocene: ODP Site 745, the East Kerguelen sediment drift: Earth and Planetary Science Letters, v. 201, p. 127–142, doi:10.1016/ S0012-821X(02)00661-1. Khatwa, A., and Tulaczyk, S., 2001, Microstructural interpretations of modern and Pleistocene subglacially deformed sediments: The relative role of parent material and subglacial processes: Journal of Quaternary Science, v. 16, no. 6, p. 507–517, doi:10.1002/jqs.609. Lear, C.H., Elderfi eld, H., and Wilson, P.A., 2000, Cenozoic deep-sea temperatures and global ice volumes from Mg/Ca in benthic foraminiferal calcite: Science, v. 287, p. 269–272, doi:10.1126/science.287.5451.269. Lear, C.H., Rosenthal, Y., Coxall, H.K., and Wilson, P.A., 2004, Late Eocene to early Miocene ice-sheet dynamics and the global carbon cycle: Paleoceanography, v. 19, no. 4, p. PA4015, doi:10.1029/2004PA001039. Lear, C.H., Bailey, T.R., Pearson, P.N., Coxall, H.K., and Rosenthal, Y., 2008, Cooling and ice growth across the Eocene-Oligocene transition: Geology, v. 36, p. 251– 254, doi:10.1130/G24584A.1. Lewis, A.R., Marchant, D.R., Ashworth, A.C., Hemming, S.R., and Machlus, M.L., 2007, Major middle Miocene global climate change: Evidence from East Antarctica and the Transantarctic Mountains: Geological Society of America Bulletin, v. 119, p. 1449–1461. Licht, K.J., Dunbar, N.W., Andrews, J.T., and Jennings, A.E., 1999, Distinguishing subglacial till and glacial marine diamictons in the western Ross Sea, Antarctica: Implications for a Last Glacial Maximum grounding line: Geological Society of America Bulletin, v. 111, p. 91–103, doi:10.1130/0016-7606(1999)111 <0091:DSTAGM>2.3.CO;2. Lowe, A.L., and Anderson, J.B., 2002, Late Quaternary advance and retreat of the West Antarctic Ice Sheet in Pine Island Bay, Antarctica: Quaternary Science Reviews, v. 21, p. 1879–1897, doi:10.1016/ S0277-3791(02)00006-9. Lønne, I., 1995, Sedimentary facies and depositional architecture of ice-contact glaciomarine systems: Sedimentary Geology, v. 98, p. 13–43, doi:10.1016/0037-0738 (95)00025-4. MacKiewicz, N.E., Powell, R.D., Carlson, P.R., and Molnia , B.F., 1984, Interlaminated ice-proximal glacimarine sediments in Muir Inlet, Alaska: Marine Geology, v. 57, no. 1–4, p. 113–147, doi:10.1016/0025-3227 (84)90197-X. Marchant, D.R., Denton, G.H., Sugden, D.E., and Swisher, C.C., III, 1993, Miocene glacial stratigraphy and landscape evolution of the western Asgard Range, Antarctica: Geografi ska Annaler, v. 75A, no. 4, p. 303–330, doi:10.2307/521205. McCarroll, D., and Rijsdijk, K., 2003, Deformation styles as a key for unlocking glacial depositional environments: Journal of Quaternary Science, v. 18, p. 473–489, doi:10.1002/jqs.780. McKay, R.M., Dunbar, G.B., Naish, T., Barrett, P.J., Carter, L., and Harper, M., 2008, Retreat history of the Ross Ice Sheet (Shelf) since the Last Glacial Maximum from deep-basin sediment cores around Ross Island: Palaeogeography, Palaeoclimatology, Palaeoecology, v. 260, p. 245–261, doi:10.1016/j.palaeo.2007.08.015. McKay, R.M., Browne, G., Carter, L., Cowan, E., Dunbar, G., Krissek, L., Naish, T., Powell, R., Reed, J., Talarico, F., and Wilch, T., 2009, The stratigraphic signature of the late Cenozoic Antarctica Ice Sheets in the Ross Embayments: Geological Society of America Bulletin, v. 121, p. 1537–1561, doi:10.1130/B26540.1. McKelvey, B.C., 1981, The lithologic logs of DVDP cores 10 and 11, eastern Taylor Valley, in McGinnis, L.D., ed., Dry Valley Drilling Project: Antarctic Research Series : Washington, D.C., American Geophysical Union, p. 63–94. McKelvey, B.C., 1982, Late Cenozoic marine and terrestrial glacial sedimentation in eastern Taylor Valley, Southern Victoria Land, in Craddock, C., ed., Proceedings of the Third Symposium on Antarctic Geology and Geophysics: Madison, Wisconsin, The University of Wisconsin Press, p. 1109–1116. Miller, K.G., Wright, J.D., and Fairbanks, R.G., 1991, Unlocking the ice house: Oligocene-Miocene oxygen isotopes, eustasy, and margin erosion: Journal of Geophysical Research, v. 96, p. 6829–6848, doi:10.1029/ 90JB02015. Miller, K.G., Mountain, G.S., the Leg 150 Shipboard Party, and Members of the New Jersey Coastal Plain Drilling Project, 1996, Drilling and dating New Jersey Oligocene- Miocene sequences: Ice volume, global sea level, and Exxon records: Science, v. 271, p. 1092–1094. Miller, K.G., Kominz, M.A., Browning, J.V., Wright, J.D., Mountain, G.S., Katz, M.E., Sugarman, P.J., Cramer, B.S., Christie-Blick, N., and Pekar, S.F., 2005, The Phanerozoic record of global sea-level change: Science, v. 310, p. 1293–1298, doi:10.1126/science.1116412. Moncrieff, A.C.M., 1989, Classifi cation of poorly-sorted sedimentary rocks: Sedimentary Geology, v. 65, p. 191–194, doi:10.1016/0037-0738(89)90015-8. Naish, T.R., and 32 others, 2001, Orbitally induced oscillations in the East Antarctic Ice Sheet at the Oligocene/ Miocene boundary: Nature, v. 413, p. 719–723, doi:10.1038/35099534. Naish, T., and 55 others, 2009, Obliquity-paced Pliocene West Antarctic Ice Sheet oscillations: Nature, v. 458, p. 322– 328, doi:10.1038/nature07867. Ó Cofaigh, C., and Dowdeswell, J.A., 2001, Laminated sediments in glacimarine environments: Diagnostic criteria for their interpretation: Quaternary Science Reviews, v. 20, p. 1411–1436. Ó Cofaigh, C., Dowdeswell, J.A., and Grobe, H., 2001, Holocene glacimarine sedimentation, inner Scoresby Sund, East Greenland: The infl uence of fast-fl owing ice-sheet outlet glaciers: Marine Geology, v. 175, p. 103–129. Pagani, M., Zachos, J., Freeman, K.H., Bohaty, S., and Tipple , B., 2005, Marked change in atmospheric carbon dioxide concentrations during the Oligocene: Science, v. 309, p. 600–603, doi:10.1126/science.1110063. Panter, K.S., Talarico, F., Bassett, K., Del Carlo, P., Field, B., Frank, T., Hoffman, S., Kuhn, G., Reichelt, L., Sandroni, S., Tavini, M., Bracciali, L., Cornamusini, G., von Eynatten, H., and Rocchi, R., 2008, Petrologic and geochemical composition of the AND-2A core, ANDRILL Southern McMurdo Sound Project, Antarctica, in Harwood, D.M., Florindo, F., Talarico, F., and Levy, R.H., eds., Studies from the ANDRILL, Southern McMurdo Sound Project, Antarctica: Terra Antarctica, v. 15, p. 147–192. Passchier, S., and Krissek, L.A., 2008, Oligocene–Miocene Antarctic continental weathering record and paleoclimatic implications, Cape Roberts Drilling Project, Ross Sea, Antarctica: Palaeogeography, Palaeoclimatology, Palaeoecology, v. 260, p. 30–40, doi:10.1016/ j.palaeo.2007.08.012. Passchier, S., Wilson, T.J., and Paulsen, T.S., 1998, Origin of breccias in the CRP-1 core: Terra Antartica, v. 5, no. 3, p. 401–409. Passchier, S., O’Brien, P.E., Damuth, J.E., Januszczack, N., Handwerger, D.A., and Whitehead, J.M., 2003, Pliocene-Pleistocene glaciomarine sedimentation in eastern Prydz Bay and development of the Prydz trough-mouth fan, ODP Sites 1166 and 1167, East Antarctica: Marine Geology, v. 199, p. 179–305. Pekar, S.F., and DeConto, R.M., 2006, High-resolution icevolume estimates for the early Miocene: Evidence for a dynamic ice sheet in Antarctica: Palaeogeography, Palaeoclimatology, Palaeoecology, v. 231, p. 101–109, doi:10.1016/j.palaeo.2005.07.027. Powell, R.D., 1981, Sedimentation conditions in Taylor Valley, Antarctica, inferred from textural analysis of DVDP cores, in McGinnis, L.D., ed., Dry Valley Drilling Project: Antarctic Research Series: Washington, D.C., American Geophysical Union, p. 331–349. Powell, R.D., and Cooper, J.M., 2002, A glacial sequence stratigraphic model for temperate, glaciated continental shelves, in Dowdeswell, J.A., and Ó Cofaigh, C., eds., Glacier-Infl uenced Sedimentation on High- Latitude Continental Margins: Geological Society of London Special Publication 203, p. 215–244. Powell, R.D., and Molnia, B.F., 1989, Glacimarine sedimentary processes, facies and morphology of the southsoutheast Alaska shelf and fjords: Marine Geology, v. 85, p. 359–390, doi:10.1016/0025-3227(89)90160-6. Prentice, M.L., Bockheim, J.G., Wilson, S.C., Burckle, L.H., Hodell, D.A., Schlüchter, C., and Kellogg, D.E., 1993, Late Neogene Antarctic glacial history: Evidence from Central Wright Valley, in Kennett, J.P., and Warnke, D.A., eds., The Antarctic Paleoenvironment: A Perspective on Global Change, Part 2: Antarctic Research Series: Washington, D.C., American Geophysical Union, p. 207–250. Rebesco, M., Camerlenghi, A., Geletti, R., and Canals, M., 2006, Margin architecture reveals the transition to the modern Antarctic ice sheet ca. 3 Ma: Geology, v. 34, no. 4, p. 301–304, doi:10.1130/G22000.1. Riddle, M.J., Craven, M., Goldsworthy, P.M., and Carsey, F., 2007, A diverse benthic assemblage 100 km from open water under the Amery Ice Shelf, Antarctica: Paleoceanography, v. 22, p. PA1204, doi:10.1029/ 2006PA001327. Shevenell, A.E., Kennett, J.P., and Lea, D.W., 2004, Middle Miocene Southern Ocean cooling and Antarctic cryosphere expansion: Science, v. 305, p. 1766–1770, doi:10.1126/science.1100061. Shevenell, A.E., Kennett, J.P., and Lea, D.W., 2008, Middle Miocene ice sheet dynamics, deep-sea temperatures, and carbon cycling: A Southern Ocean perspective: Geochemistry, Geophysics, Geosystems, v. 9, no. 2, Q02006, p. 1–14. Sugden, D., and Denton, G., 2004, Cenozoic landscape evolution of the Convoy Range to Mackay Glacier area, Transantarctic Mountains: Onshore to offshore synthesis: Geological Society of America Bulletin, v. 116, p. 840–857, doi:10.1130/B25356.1. Svendsen, J.I., Mangerud, J., Elverhøi, A., Solheim, A., and Schüttenhelm, R.T.E., 1992, The late Weichselian glacial maximum on western Spitsbergen inferred from offshore sediment cores: Marine Geology, v. 104, p. 1–17, doi:10.1016/0025-3227(92)90081-R. Tripati, A.K., Roberts, C.D., and Eagle, R.A., 2009, Coupling of CO2 and ice sheet stability over major climate transitions of the last 20 million years: Science, v. 326, no. 5958, p. 1394–1397, doi:10.1126/ science.1178296. van der Meer, J.J.M., 1993, Microscopic evidence of subglacial deformation: Quaternary Science Reviews, v. 12, p. 553–587, doi:10.1016/0277-3791(93)90069-X. Warny, S., Askin, R.A., Hannah, M.J., Mohr, B.A.R., Raine, J.I., Harwood, D.M., Florindo, F., and the SMS Science Team, 2009, Palynomorphs from a sediment core reveal a sudden remarkably warm Antarctica during the middle Miocene: Geology, v. 37, no. 10, p. 955– 958, doi:10.1130/G30139A.1. Webb, P.-N., and Wrenn, J.H., 1982, Upper Cenozoic micropaleontology and biostratigraphy of eastern Taylor Valley, Antarctica, in Craddock, C., ed., Proceedings of the Third Symposium on Antarctic Geology and Geo physics: Madison, Wisconsin, The University of Wisconsin Press, p. 1117–1122. Whitehead, J.M., Ehrmann, W., Harwood, D.M., Hillenbrand, C.-D., Quilty, P.Q., Hart, C., Taviani, M., Thorn, V., and McMinn, A., 2006, Late Miocene paleoenvironment of the Lambert graben embayment, East Antarctica, evident from: Mollusc paleontology, sedimentology and geochemistry: Global and Planetary Change, v. 50, no. 3–4, p. 127–147. Wilson, G., Pekar, S., Naish, T., Passchier, S., and DeConto, R., 2009, The Oligocene-Miocene boundary—Antarctic climate response to orbital forcing, in Florindo, F., and Seigert, M., eds., Antarctic Climate Evolution: Developments in Earth & Environmental Sciences, Volume 8: Amsterdam, The Netherlands, Elsevier, p. 444–465. Zachos, J., Pagani, M., Sloan, L., Thomas, E., and Billups, K., 2001, Trends, rhythms, and aberrations in global climate: 65 Ma to present: Science, v. 292, p. 686–693. Zachos, J.C., Dickens, G.R., and Zeebe, R.E., 2008, An early Cenozoic perspective on greenhouse warming and carbon-cycle dynamics: Nature, v. 451, p. 279–283, doi:10.1038/nature06588. http://hdl.handle.net/2122/7528 doi:10.1130/B30334.1 restricted ANDRILL-SMS Miocene Ross Sea Antarctica 03. Hydrosphere::03.01. General::03.01.06. Paleoceanography and paleoclimatology 04. Solid Earth::04.04. Geology::04.04.10. Stratigraphy 04. Solid Earth::04.05. Geomagnetism::04.05.06. Paleomagnetism article 2011 ftingv https://doi.org/10.1130/B30334.1 https://doi.org/10.1111/j.1365-3091.1992 2022-07-29T06:06:07Z In 2007, the Antarctic Geological Drilling Program (ANDRILL) drilled 1138.54 m of strata ~10 km off the East Antarctic coast, includ ing an expanded early to middle Miocene succession not previously recovered from the Antarctic continental shelf. Here, we pre sent a facies model, distribution, and paleoclimatic interpretation for the AND-2A drill hole, which enable us, for the fi rst time, to reconstruct periods of early and middle Miocene glacial advance and retreat and paleo environmental changes at an ice-proximal site. Three types of facies associations can be recognized that imply signifi cantly different paleoclimatic interpretations. (1) A diamictite-dominated facies association represents glacially dominated depositional environments, including subglacial environments, with only brief intervals where ice-free coasts existed, and periods when the ice sheet was periodically larger than the modern ice sheet. (2) A stratified diamictite and mudstone facies association includes facies characteristic of open-marine to iceberg-infl uenced depositional environments and is more consistent with a very dynamic ice sheet, with a grounding line south of the modern position. (3) A mudstone-dominated facies association generally lacks diamictites and was produced in a glacially infl uenced hemipelagic depositional environment. Based on the distribution of these facies associations, we can conclude that the Antarctic ice sheets were dynamic, with grounding lines south of the modern location at ca. 20.1–19.6 Ma and ca. 19.3–18.7 Ma and during the Miocene climatic optimum, ca. 17.6–15.4 Ma, with ice-sheet and sea-ice minima at ca. 16.5–16.3 Ma and ca. 15.7–15.6 Ma. While glacial minima at ca. 20.1–19.6 Ma and ca. 19.3–18.7 Ma were characterized by temperate margins, an increased abundance of gravelly facies and diatomaceous siltstone and a lack of meltwater plume deposits suggest a cooler and drier climate with polythermal conditions for the Miocene climatic optimum (ca. 17.6–15.4 Ma). Several periods of major ice growth ... Article in Journal/Newspaper Annals of Glaciology Antarc* Antarctic Antarctic Science Antarctica Ice Sheet Iceberg* Journal of Glaciology Ross Sea Sea ice Earth-Prints (Istituto Nazionale di Geofisica e Vulcanologia) Antarctic Ross Sea The Antarctic Geological Society of America Bulletin 123 11-12 2352 2365