Getting around Antarctica: new high-resolution mappings of the grounded and freely-floating boundaries of the Antarctic ice sheet created for the International Polar Year
Two ice-dynamic transitions of the Antarctic ice sheet – the boundary of grounded ice features and the freelyfloating boundary – are mapped at 15-m resolution by participants of the International Polar Year project ASAID using customized software combining Landsat-7 imagery and ICESat/GLAS laser alt...
Published in: | The Cryosphere |
---|---|
Main Authors: | , , , , , , , , , , , , , , , , , |
Other Authors: | , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , |
Format: | Article in Journal/Newspaper |
Language: | English |
Published: |
Copernicus Pubblications
2011
|
Subjects: | |
Online Access: | http://hdl.handle.net/2122/7248 https://doi.org/10.5194/tc-5-569-2011 |
id |
ftingv:oai:www.earth-prints.org:2122/7248 |
---|---|
record_format |
openpolar |
institution |
Open Polar |
collection |
Earth-Prints (Istituto Nazionale di Geofisica e Vulcanologia) |
op_collection_id |
ftingv |
language |
English |
topic |
Antarctica ice sheet photoclinometry freely-floating boundaries 02. Cryosphere::02.02. Glaciers::02.02.05. Ice dynamics 02. Cryosphere::02.02. Glaciers::02.02.06. Mass balance 02. Cryosphere::02.02. Glaciers::02.02.07. Ocean/ice interaction |
spellingShingle |
Antarctica ice sheet photoclinometry freely-floating boundaries 02. Cryosphere::02.02. Glaciers::02.02.05. Ice dynamics 02. Cryosphere::02.02. Glaciers::02.02.06. Mass balance 02. Cryosphere::02.02. Glaciers::02.02.07. Ocean/ice interaction Bindschadler, R. Choi, H. Wichlacz, A. Bingham, R. Bohlander, J. Brunt, K. Corr, H. Drews, R. Fricker, H. Hall, M. Hindmarsh, R. Kohler, J. Padman, L. Rack, W. Rotschky, G. Urbini, S. Vornberger, P. Young, N. Getting around Antarctica: new high-resolution mappings of the grounded and freely-floating boundaries of the Antarctic ice sheet created for the International Polar Year |
topic_facet |
Antarctica ice sheet photoclinometry freely-floating boundaries 02. Cryosphere::02.02. Glaciers::02.02.05. Ice dynamics 02. Cryosphere::02.02. Glaciers::02.02.06. Mass balance 02. Cryosphere::02.02. Glaciers::02.02.07. Ocean/ice interaction |
description |
Two ice-dynamic transitions of the Antarctic ice sheet – the boundary of grounded ice features and the freelyfloating boundary – are mapped at 15-m resolution by participants of the International Polar Year project ASAID using customized software combining Landsat-7 imagery and ICESat/GLAS laser altimetry. The grounded ice boundary is 53 610 km long; 74% abuts to floating ice shelves or outlet glaciers, 19% is adjacent to open or sea-ice covered ocean, and 7% of the boundary ice terminates on land. The freelyfloating boundary, called here the hydrostatic line, is the most landward position on ice shelves that expresses the full amplitude of oscillating ocean tides. It extends 27 521 km and is discontinuous. Positional (one-sigma) accuracies of the grounded ice boundary vary an order of magnitude ranging from ±52m for the land and open-ocean terminating segments to ±502m for the outlet glaciers. The hydrostatic line is less well positioned with errors over 2 km. Elevations along each line are selected from 6 candidate digital elevation models based on their agreement with ICESat elevation values and surface shape inferred from the Landsat imagery. Elevations along the hydrostatic line are converted to ice thicknesses by applying a firn-correction factor and a flotation criterion. BEDMAP-compiled data and other airborne data are compared to the ASAID elevations and ice thicknesses to arrive at quantitative (one-sigma) uncertainties of surface elevations of ±3.6, ±9.6, ±11.4, ±30 and ±100m for five ASAID-assigned confidence levels. Over one-half of the surface elevations along the grounded ice boundary and over one-third of the hydrostatic line elevations are ranked in the highest two confidence categories. A comparison between ASAID-calculated ice shelf thicknesses and BEDMAP-compiled data indicate a thin-ice bias of 41.2±71.3m for the ASAID ice thicknesses. The relationship between the seaward offset of the hydrostatic line from the grounded ice boundary only weakly matches a prediction based on beam theory. The ... |
author2 |
Bindschadler, R.; Code 614.0, NASA Goddard Space Flight Center, Greenbelt, MD 20771, USA Choi, H.; SAIC, NASA Goddard Space Flight Center, Greenbelt MD 20771, USA Wichlacz, A.; SAIC, NASA Goddard Space Flight Center, Greenbelt MD 20771, USA Bingham, R.; School of Geosciences, University of Aberdeen, Aberdeen, AB24 3FX, UK Bohlander, J.; National Snow and Ice Data Center, University of Colorado, Boulder CO 80309-0449, USA Brunt, K.; Code 614.1, NASA Goddard Space Flight Center, Greenbelt MD 20771, USA Corr, H.; British Antarctic Survey, High Cross, Madingley Road, Cambridge, CB3 0ET, UK Drews, R.; Alfred Wegener Institut for Polar and Marine Research, Postfach 12 01 61, 27515 Bremerhaven, Germany Fricker, H.; Scripps Institute of Oceanography, University of California at San Diego, 9500 Giman Drive, La Jolla CA 92093, USA Hall, M.; Climate Change Institute, University of Maine, Orono ME 04469, USA Hindmarsh, R.; British Antarctic Survey, High Cross, Madingley Road, Cambridge, CB3 0ET, UK Kohler, J.; Norwegian Polar Institute, Polar Environmental Centre, 9296 Tromso, Norway Padman, L.; Earth and Space Research (ESR), 3350 SW Cascade Ave., Corvallis, OR 97333-1536, USA Rack, W.; Gateway Antarctica, University of Canterbury, Private Bag, Christchurch 8140, New Zealand Rotschky, G.; Norwegian Polar Institute, Polar Environmental Centre, 9296 Tromso, Norway Urbini, S.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Roma2, Roma, Italia Vornberger, P.; SAIC, NASA Goddard Space Flight Center, Greenbelt MD 20771, USA Young, N.; Australian Antarctic Division, University of Tasmania, Kingston, Tasmania 7050, Australia Code 614.0, NASA Goddard Space Flight Center, Greenbelt, MD 20771, USA SAIC, NASA Goddard Space Flight Center, Greenbelt MD 20771, USA School of Geosciences, University of Aberdeen, Aberdeen, AB24 3FX, UK National Snow and Ice Data Center, University of Colorado, Boulder CO 80309-0449, USA Code 614.1, NASA Goddard Space Flight Center, Greenbelt MD 20771, USA British Antarctic Survey, High Cross, Madingley Road, Cambridge, CB3 0ET, UK Alfred Wegener Institut for Polar and Marine Research, Postfach 12 01 61, 27515 Bremerhaven, Germany Scripps Institute of Oceanography, University of California at San Diego, 9500 Giman Drive, La Jolla CA 92093, USA Climate Change Institute, University of Maine, Orono ME 04469, USA Norwegian Polar Institute, Polar Environmental Centre, 9296 Tromso, Norway Earth and Space Research (ESR), 3350 SW Cascade Ave., Corvallis, OR 97333-1536, USA Gateway Antarctica, University of Canterbury, Private Bag, Christchurch 8140, New Zealand Istituto Nazionale di Geofisica e Vulcanologia, Sezione Roma2, Roma, Italia Australian Antarctic Division, University of Tasmania, Kingston, Tasmania 7050, Australia |
format |
Article in Journal/Newspaper |
author |
Bindschadler, R. Choi, H. Wichlacz, A. Bingham, R. Bohlander, J. Brunt, K. Corr, H. Drews, R. Fricker, H. Hall, M. Hindmarsh, R. Kohler, J. Padman, L. Rack, W. Rotschky, G. Urbini, S. Vornberger, P. Young, N. |
author_facet |
Bindschadler, R. Choi, H. Wichlacz, A. Bingham, R. Bohlander, J. Brunt, K. Corr, H. Drews, R. Fricker, H. Hall, M. Hindmarsh, R. Kohler, J. Padman, L. Rack, W. Rotschky, G. Urbini, S. Vornberger, P. Young, N. |
author_sort |
Bindschadler, R. |
title |
Getting around Antarctica: new high-resolution mappings of the grounded and freely-floating boundaries of the Antarctic ice sheet created for the International Polar Year |
title_short |
Getting around Antarctica: new high-resolution mappings of the grounded and freely-floating boundaries of the Antarctic ice sheet created for the International Polar Year |
title_full |
Getting around Antarctica: new high-resolution mappings of the grounded and freely-floating boundaries of the Antarctic ice sheet created for the International Polar Year |
title_fullStr |
Getting around Antarctica: new high-resolution mappings of the grounded and freely-floating boundaries of the Antarctic ice sheet created for the International Polar Year |
title_full_unstemmed |
Getting around Antarctica: new high-resolution mappings of the grounded and freely-floating boundaries of the Antarctic ice sheet created for the International Polar Year |
title_sort |
getting around antarctica: new high-resolution mappings of the grounded and freely-floating boundaries of the antarctic ice sheet created for the international polar year |
publisher |
Copernicus Pubblications |
publishDate |
2011 |
url |
http://hdl.handle.net/2122/7248 https://doi.org/10.5194/tc-5-569-2011 |
geographic |
Antarctic The Antarctic |
geographic_facet |
Antarctic The Antarctic |
genre |
Antarc* Antarctic Antarctica Ice Sheet Ice Shelf Ice Shelves International Polar Year Polar geoscience Sea ice The Cryosphere |
genre_facet |
Antarc* Antarctic Antarctica Ice Sheet Ice Shelf Ice Shelves International Polar Year Polar geoscience Sea ice The Cryosphere |
op_relation |
The Cryosphere 3/5 (2011) Alley, R. B., Blankenship, D. D., Rooney, S. T., and Bentley, C. R.: Sedimentation beneath ice shelves – the view from ice stream B, Mar. Geol., 85, 101–120, 1989. Anandakrishnan, S., Voigt, D. E., Alley, R. R., and King, M. A.: Ice stream D flow speed is strongly modulated by the tide beneath the Ross Ice Shelf, Geophys. Res. Lett., 30(7), 1361, doi:10.1029/2002GL016329, 2003. Bamber, J. L., Gomez-Dans, J. L., and Griggs, J. A.: A new 1 km digital elevation model of the Antarctic derived from combined satellite radar and laser data – Part 1: Data and methods, The Cryosphere, 3, 101–111, doi:10.5194/tc-3-101-2009, 2009. Bindschadler, R. A. and Vornberger, P. L.: Detailed elevation map of ice stream C using satellite imagery and airborne radar, Ann. Glaciol., 20, 327–335, 1994. Bindschadler, R. A., Vornberger, P. L., King, M., and Padman, L.: Tidally-Driven Stick-Slip Motion in the Mouth of Whillans Ice Stream, Antarctica, Ann. Glaciol., 36, 263–272, 2003. Bindschadler, R., Vornberger, P., Fleming, A., Fox, A., Mullins, J., Binnie, D., Paulsen, S. J., Granneman, B., and Gorodetzky, D.: The Landsat Image Mosaic of Antarctica, Remote Sens. Environ., 112(12), 4214–4226, doi:10.1016/j.rse.2008.07.006, 2008. Bindschadler, R. A., Wichlacz, A., and Choi, H.: An Illustrated Guide to Using ASAID Software, NASA Technical Memorandum, TM-2011-215879, 21 pp., 2011. Bohlander, J. and Scambos, T.: Antarctic coastlines and grounding line derived from MODIS Mosaic of Antarctica (MOA), Boulder, Colorado USA: National Snow and Ice Data Center, Digital media, 2007. Brunt, K. M., Fricker, H. A., Padman, L., and O’Neel, S.: ICESat- Derived Grounding Zone for Antarctic Ice Shelves, Boulder, Colorado USA: National Snow and Ice Data Center, Digital media, 2010a. Brunt, K. M., Fricker, H. A., Padman, L., Scambos, T. A., and O’Neel, S.: Mapping the grounding zone of the Ross Ice Shelf, Antarctica, Using ICESat laser altimetry, Ann. Glaciol., 51(55), 71–79, 2010b. Corr, H. F. J., Doake, C. S. M., Jenkins, A., and Vaughan, D. G.: Investigations of an “ice plain” in the mouth of Pine Island Glacier, Antarctica, J. Glaciol., 47(156), 51–57, 2001. Ferrigno, J. G., Mullins, J. L., Stapleton, J. A., Chavez, P. S., Velasco, M. G.,Williams, R. S., Delinski, G. F., and Lear, D.: Satellite Image Map of Antarctica, U.S. Geological Survey, Miscellaneous Investigations Map Series, Map 1-2560, 1996. Fricker, H. A. and Padman, L.: Ice shelf grounding zone structure from ICESat laser altimetry, Geophys. Res. Lett., 33, L15502, doi:10.1029/2006GL026907, 2006. Fricker, H. A., Coleman, R., Padman, L., Scambos, T. A., Bohlander, J., and Brunt, K. M.: Mapping the grounding zone of the Amery Ice Shelf, East Antarctica using In- SAR, MODIS and ICESat, Antarct. Sci., 21(5), 515–532, doi:10.1017/S095410200999023X, 2009. Joughin, I., Smith, B. E., and Holland, D. M.: Sensitivity of 21st Century Sea Level to Ocean-Induced Thinning of Pine Island Glacier, Antarctica, Geophys. Res. Lett., 37, L20502, doi:10.1029/2010GL044819, 2010. Korona J., Berthier, E., Bernard, M., Remy, F., and Thouvenot, E.: SPIRIT. SPOT 5 stereoscopic survey of Polar Ice: Reference Images and Topographies during the fourth International Polar Year (2007–2009), ISPRS J. Photogramm., 64, 204–212, 2009. Lee, D. S., Storey, J. C., Choate, M. J., and Hayes, R. W.: Four Years of Landsat-7 On-Orbit Geometric Calibration and Performance, IEEE T. Geosci. Remote, 42(12), 2786–2795, doi:10.1109/TGRS.2004.836769, 2004. Liu, H., Jezek, K., Li, B., and Zhao, Z.: Radarsat Antarctic Mapping Project digital elevation model version 2, Boulder, CO: National Snow and Ice Data Center, Digital media, 2001. Lythe, M. B., Vaughan, D. G., and BEDMAP Consortium, BEDMAP: A new ice thickness and subglacial topographic model of Antarctica, J. Geophys. Res., 106(B6), 11335–11351, 2001. Payne, A. J., Vieli, A., Shepherd, A. P., Wingham, D. J., and Rignot, E.: Recent dramatic thinning of largest West Antarctic ice stream triggered by oceans, Geophys. Res. Lett., 31(23), L23401, doi:10.1029/2004GL021284, 2004. Payne, A. J., Holland, P. R., Shepherd, A. P., Rutt, I. C., Jenkins, A., and Joughin, I.: Numerical modeling of ocean-ice interactions under Pine Island Bay’s ice shelf, J. Geophys. Res., 112, C10019, doi:10.1029/2006JC003733, 2007. Pritchard, H. D., Arthern, R. J., Vaughan, D. G., and Edwards, L. A.: Extensive dynamic thinning on the margins of the Greenland and Antarctic ice sheets, Nature, 461, 971–975, doi:10.1038/nature08471, 2009. Rignot, E.: Tidal motion, ice velocity and melt rate of Petermann Gletscher, Greenland, measured from radar interferometry, J. Glaciol., 42(142), 476–485, 1996. Rignot, E., Bamber, J. L., van den Broeke, M. R., Davis, C., Yonghong, L., van deBerg, W. J., and van Meijgaard, E.: Recent Antarctic ice mass loss from radar interferometry and regional climate modeling, Nat. Geosci., 1, 106–110, doi:10.1038/ngeo102, 2008. Rignot, E., Mouginot, J., and Scheuchl, B.: Antarctic grounding line mapping from differential satellite radar interferometry, Geophys. Res. Lett., 38, L10504, doi:10.1029/2011GL047109, 2011. Schoof, C.: Ice sheet grounding line dynamics: Steady states, stability, and hysteresis, J. Geophys. Res., 112, F03S28, doi:10.1029/2006JF000664, 2007. Shepherd, A., Wingham, D. J., and Mansley, J. A. D.: Inland thinning of the Amundsen Sea sector, Geophys. Res. Lett., 29(10), 1364, doi:10.1029/2001GL014183, 2002. Thomas, R., Rignot, E., Casassa, G., Kanagaratnam, P., Acuna, C., Akins, T., Brecher, H., Frederick, E., Gogineni, P., Krabill, W., Manizade, S., Ramamoorthy, H., Rivera, A., Russell, R., Sonntag, J., Swift, R., Yungel, J., and Zwally, J.: Accelerated sealevel rise from West Antarctica, Science, 306(5694), 255–258, 2004. Thomas, R. H., Stephenson, S. N., Bindschadler, R. A., Shabtaie, S., and Bentley, C. R.: Thinning and grounding line retreat on the Ross Ice Shelf, Ann. Glaciol., 11, 165–172, 1988. van den Broeke, M. R., van de Berg, W. J., and van Meijgaard, E.: Firn depth correction along the Antarctic grounding line, Antarct. Sci., 20(5), 1–5, doi:10.1017/S095410200800148X, 2008. Vaughan, D. G.: Tidal Flexure at Ice Sheet Margins, J. Geophys. Res., 100(B4), 6213–6224, 1995. Wiens, D. A., Anandakrishnan, S.,Winberry, J. P., and King,M. A.: Simultaneous teleseismic and geodetic observations of the stickslip motion of an Antarctic ice stream, Nature, 453, 770–774, doi:10.1038/nature06990, 2008. Wildey, R. L.: Generalized photoclinometry for Mariner 9, Icarus, 25, 613–626, 1975. Yamanokuchi, T., Doi, K., and Shibuya, K.: Validation of grounding line of the East Antarctic Ice Sheet derived by ERS-1/2 interferometric SAR data, Polar Geoscience, 18, 1–14, 2005. Zwally, H. J., Schutz, R., Bentley, C., Bufton, J., Herring, T., Minster, J., Spinhirne, J., and Thomas, R.: GLAS/ICESat L2 Antarctic and Greenland Ice Sheet Altimetry Data V001, Boulder, CO: National Snow and Ice Data Center, Digital media, 2003. http://hdl.handle.net/2122/7248 www.the-cryosphere.net/5/569/2011/ doi:10.5194/tc-5-569-2011 |
op_rights |
open |
op_doi |
https://doi.org/10.5194/tc-5-569-201110.1029/2002GL016329 |
container_title |
The Cryosphere |
container_volume |
5 |
container_issue |
3 |
container_start_page |
569 |
op_container_end_page |
588 |
_version_ |
1790593893325078528 |
spelling |
ftingv:oai:www.earth-prints.org:2122/7248 2024-02-11T09:58:17+01:00 Getting around Antarctica: new high-resolution mappings of the grounded and freely-floating boundaries of the Antarctic ice sheet created for the International Polar Year Bindschadler, R. Choi, H. Wichlacz, A. Bingham, R. Bohlander, J. Brunt, K. Corr, H. Drews, R. Fricker, H. Hall, M. Hindmarsh, R. Kohler, J. Padman, L. Rack, W. Rotschky, G. Urbini, S. Vornberger, P. Young, N. Bindschadler, R.; Code 614.0, NASA Goddard Space Flight Center, Greenbelt, MD 20771, USA Choi, H.; SAIC, NASA Goddard Space Flight Center, Greenbelt MD 20771, USA Wichlacz, A.; SAIC, NASA Goddard Space Flight Center, Greenbelt MD 20771, USA Bingham, R.; School of Geosciences, University of Aberdeen, Aberdeen, AB24 3FX, UK Bohlander, J.; National Snow and Ice Data Center, University of Colorado, Boulder CO 80309-0449, USA Brunt, K.; Code 614.1, NASA Goddard Space Flight Center, Greenbelt MD 20771, USA Corr, H.; British Antarctic Survey, High Cross, Madingley Road, Cambridge, CB3 0ET, UK Drews, R.; Alfred Wegener Institut for Polar and Marine Research, Postfach 12 01 61, 27515 Bremerhaven, Germany Fricker, H.; Scripps Institute of Oceanography, University of California at San Diego, 9500 Giman Drive, La Jolla CA 92093, USA Hall, M.; Climate Change Institute, University of Maine, Orono ME 04469, USA Hindmarsh, R.; British Antarctic Survey, High Cross, Madingley Road, Cambridge, CB3 0ET, UK Kohler, J.; Norwegian Polar Institute, Polar Environmental Centre, 9296 Tromso, Norway Padman, L.; Earth and Space Research (ESR), 3350 SW Cascade Ave., Corvallis, OR 97333-1536, USA Rack, W.; Gateway Antarctica, University of Canterbury, Private Bag, Christchurch 8140, New Zealand Rotschky, G.; Norwegian Polar Institute, Polar Environmental Centre, 9296 Tromso, Norway Urbini, S.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Roma2, Roma, Italia Vornberger, P.; SAIC, NASA Goddard Space Flight Center, Greenbelt MD 20771, USA Young, N.; Australian Antarctic Division, University of Tasmania, Kingston, Tasmania 7050, Australia Code 614.0, NASA Goddard Space Flight Center, Greenbelt, MD 20771, USA SAIC, NASA Goddard Space Flight Center, Greenbelt MD 20771, USA School of Geosciences, University of Aberdeen, Aberdeen, AB24 3FX, UK National Snow and Ice Data Center, University of Colorado, Boulder CO 80309-0449, USA Code 614.1, NASA Goddard Space Flight Center, Greenbelt MD 20771, USA British Antarctic Survey, High Cross, Madingley Road, Cambridge, CB3 0ET, UK Alfred Wegener Institut for Polar and Marine Research, Postfach 12 01 61, 27515 Bremerhaven, Germany Scripps Institute of Oceanography, University of California at San Diego, 9500 Giman Drive, La Jolla CA 92093, USA Climate Change Institute, University of Maine, Orono ME 04469, USA Norwegian Polar Institute, Polar Environmental Centre, 9296 Tromso, Norway Earth and Space Research (ESR), 3350 SW Cascade Ave., Corvallis, OR 97333-1536, USA Gateway Antarctica, University of Canterbury, Private Bag, Christchurch 8140, New Zealand Istituto Nazionale di Geofisica e Vulcanologia, Sezione Roma2, Roma, Italia Australian Antarctic Division, University of Tasmania, Kingston, Tasmania 7050, Australia 2011-07 http://hdl.handle.net/2122/7248 https://doi.org/10.5194/tc-5-569-2011 en eng Copernicus Pubblications The Cryosphere 3/5 (2011) Alley, R. B., Blankenship, D. D., Rooney, S. T., and Bentley, C. R.: Sedimentation beneath ice shelves – the view from ice stream B, Mar. Geol., 85, 101–120, 1989. Anandakrishnan, S., Voigt, D. E., Alley, R. R., and King, M. A.: Ice stream D flow speed is strongly modulated by the tide beneath the Ross Ice Shelf, Geophys. Res. Lett., 30(7), 1361, doi:10.1029/2002GL016329, 2003. Bamber, J. L., Gomez-Dans, J. L., and Griggs, J. A.: A new 1 km digital elevation model of the Antarctic derived from combined satellite radar and laser data – Part 1: Data and methods, The Cryosphere, 3, 101–111, doi:10.5194/tc-3-101-2009, 2009. Bindschadler, R. A. and Vornberger, P. L.: Detailed elevation map of ice stream C using satellite imagery and airborne radar, Ann. Glaciol., 20, 327–335, 1994. Bindschadler, R. A., Vornberger, P. L., King, M., and Padman, L.: Tidally-Driven Stick-Slip Motion in the Mouth of Whillans Ice Stream, Antarctica, Ann. Glaciol., 36, 263–272, 2003. Bindschadler, R., Vornberger, P., Fleming, A., Fox, A., Mullins, J., Binnie, D., Paulsen, S. J., Granneman, B., and Gorodetzky, D.: The Landsat Image Mosaic of Antarctica, Remote Sens. Environ., 112(12), 4214–4226, doi:10.1016/j.rse.2008.07.006, 2008. Bindschadler, R. A., Wichlacz, A., and Choi, H.: An Illustrated Guide to Using ASAID Software, NASA Technical Memorandum, TM-2011-215879, 21 pp., 2011. Bohlander, J. and Scambos, T.: Antarctic coastlines and grounding line derived from MODIS Mosaic of Antarctica (MOA), Boulder, Colorado USA: National Snow and Ice Data Center, Digital media, 2007. Brunt, K. M., Fricker, H. A., Padman, L., and O’Neel, S.: ICESat- Derived Grounding Zone for Antarctic Ice Shelves, Boulder, Colorado USA: National Snow and Ice Data Center, Digital media, 2010a. Brunt, K. M., Fricker, H. A., Padman, L., Scambos, T. A., and O’Neel, S.: Mapping the grounding zone of the Ross Ice Shelf, Antarctica, Using ICESat laser altimetry, Ann. Glaciol., 51(55), 71–79, 2010b. Corr, H. F. J., Doake, C. S. M., Jenkins, A., and Vaughan, D. G.: Investigations of an “ice plain” in the mouth of Pine Island Glacier, Antarctica, J. Glaciol., 47(156), 51–57, 2001. Ferrigno, J. G., Mullins, J. L., Stapleton, J. A., Chavez, P. S., Velasco, M. G.,Williams, R. S., Delinski, G. F., and Lear, D.: Satellite Image Map of Antarctica, U.S. Geological Survey, Miscellaneous Investigations Map Series, Map 1-2560, 1996. Fricker, H. A. and Padman, L.: Ice shelf grounding zone structure from ICESat laser altimetry, Geophys. Res. Lett., 33, L15502, doi:10.1029/2006GL026907, 2006. Fricker, H. A., Coleman, R., Padman, L., Scambos, T. A., Bohlander, J., and Brunt, K. M.: Mapping the grounding zone of the Amery Ice Shelf, East Antarctica using In- SAR, MODIS and ICESat, Antarct. Sci., 21(5), 515–532, doi:10.1017/S095410200999023X, 2009. Joughin, I., Smith, B. E., and Holland, D. M.: Sensitivity of 21st Century Sea Level to Ocean-Induced Thinning of Pine Island Glacier, Antarctica, Geophys. Res. Lett., 37, L20502, doi:10.1029/2010GL044819, 2010. Korona J., Berthier, E., Bernard, M., Remy, F., and Thouvenot, E.: SPIRIT. SPOT 5 stereoscopic survey of Polar Ice: Reference Images and Topographies during the fourth International Polar Year (2007–2009), ISPRS J. Photogramm., 64, 204–212, 2009. Lee, D. S., Storey, J. C., Choate, M. J., and Hayes, R. W.: Four Years of Landsat-7 On-Orbit Geometric Calibration and Performance, IEEE T. Geosci. Remote, 42(12), 2786–2795, doi:10.1109/TGRS.2004.836769, 2004. Liu, H., Jezek, K., Li, B., and Zhao, Z.: Radarsat Antarctic Mapping Project digital elevation model version 2, Boulder, CO: National Snow and Ice Data Center, Digital media, 2001. Lythe, M. B., Vaughan, D. G., and BEDMAP Consortium, BEDMAP: A new ice thickness and subglacial topographic model of Antarctica, J. Geophys. Res., 106(B6), 11335–11351, 2001. Payne, A. J., Vieli, A., Shepherd, A. P., Wingham, D. J., and Rignot, E.: Recent dramatic thinning of largest West Antarctic ice stream triggered by oceans, Geophys. Res. Lett., 31(23), L23401, doi:10.1029/2004GL021284, 2004. Payne, A. J., Holland, P. R., Shepherd, A. P., Rutt, I. C., Jenkins, A., and Joughin, I.: Numerical modeling of ocean-ice interactions under Pine Island Bay’s ice shelf, J. Geophys. Res., 112, C10019, doi:10.1029/2006JC003733, 2007. Pritchard, H. D., Arthern, R. J., Vaughan, D. G., and Edwards, L. A.: Extensive dynamic thinning on the margins of the Greenland and Antarctic ice sheets, Nature, 461, 971–975, doi:10.1038/nature08471, 2009. Rignot, E.: Tidal motion, ice velocity and melt rate of Petermann Gletscher, Greenland, measured from radar interferometry, J. Glaciol., 42(142), 476–485, 1996. Rignot, E., Bamber, J. L., van den Broeke, M. R., Davis, C., Yonghong, L., van deBerg, W. J., and van Meijgaard, E.: Recent Antarctic ice mass loss from radar interferometry and regional climate modeling, Nat. Geosci., 1, 106–110, doi:10.1038/ngeo102, 2008. Rignot, E., Mouginot, J., and Scheuchl, B.: Antarctic grounding line mapping from differential satellite radar interferometry, Geophys. Res. Lett., 38, L10504, doi:10.1029/2011GL047109, 2011. Schoof, C.: Ice sheet grounding line dynamics: Steady states, stability, and hysteresis, J. Geophys. Res., 112, F03S28, doi:10.1029/2006JF000664, 2007. Shepherd, A., Wingham, D. J., and Mansley, J. A. D.: Inland thinning of the Amundsen Sea sector, Geophys. Res. Lett., 29(10), 1364, doi:10.1029/2001GL014183, 2002. Thomas, R., Rignot, E., Casassa, G., Kanagaratnam, P., Acuna, C., Akins, T., Brecher, H., Frederick, E., Gogineni, P., Krabill, W., Manizade, S., Ramamoorthy, H., Rivera, A., Russell, R., Sonntag, J., Swift, R., Yungel, J., and Zwally, J.: Accelerated sealevel rise from West Antarctica, Science, 306(5694), 255–258, 2004. Thomas, R. H., Stephenson, S. N., Bindschadler, R. A., Shabtaie, S., and Bentley, C. R.: Thinning and grounding line retreat on the Ross Ice Shelf, Ann. Glaciol., 11, 165–172, 1988. van den Broeke, M. R., van de Berg, W. J., and van Meijgaard, E.: Firn depth correction along the Antarctic grounding line, Antarct. Sci., 20(5), 1–5, doi:10.1017/S095410200800148X, 2008. Vaughan, D. G.: Tidal Flexure at Ice Sheet Margins, J. Geophys. Res., 100(B4), 6213–6224, 1995. Wiens, D. A., Anandakrishnan, S.,Winberry, J. P., and King,M. A.: Simultaneous teleseismic and geodetic observations of the stickslip motion of an Antarctic ice stream, Nature, 453, 770–774, doi:10.1038/nature06990, 2008. Wildey, R. L.: Generalized photoclinometry for Mariner 9, Icarus, 25, 613–626, 1975. Yamanokuchi, T., Doi, K., and Shibuya, K.: Validation of grounding line of the East Antarctic Ice Sheet derived by ERS-1/2 interferometric SAR data, Polar Geoscience, 18, 1–14, 2005. Zwally, H. J., Schutz, R., Bentley, C., Bufton, J., Herring, T., Minster, J., Spinhirne, J., and Thomas, R.: GLAS/ICESat L2 Antarctic and Greenland Ice Sheet Altimetry Data V001, Boulder, CO: National Snow and Ice Data Center, Digital media, 2003. http://hdl.handle.net/2122/7248 www.the-cryosphere.net/5/569/2011/ doi:10.5194/tc-5-569-2011 open Antarctica ice sheet photoclinometry freely-floating boundaries 02. Cryosphere::02.02. Glaciers::02.02.05. Ice dynamics 02. Cryosphere::02.02. Glaciers::02.02.06. Mass balance 02. Cryosphere::02.02. Glaciers::02.02.07. Ocean/ice interaction article 2011 ftingv https://doi.org/10.5194/tc-5-569-201110.1029/2002GL016329 2024-01-16T23:26:25Z Two ice-dynamic transitions of the Antarctic ice sheet – the boundary of grounded ice features and the freelyfloating boundary – are mapped at 15-m resolution by participants of the International Polar Year project ASAID using customized software combining Landsat-7 imagery and ICESat/GLAS laser altimetry. The grounded ice boundary is 53 610 km long; 74% abuts to floating ice shelves or outlet glaciers, 19% is adjacent to open or sea-ice covered ocean, and 7% of the boundary ice terminates on land. The freelyfloating boundary, called here the hydrostatic line, is the most landward position on ice shelves that expresses the full amplitude of oscillating ocean tides. It extends 27 521 km and is discontinuous. Positional (one-sigma) accuracies of the grounded ice boundary vary an order of magnitude ranging from ±52m for the land and open-ocean terminating segments to ±502m for the outlet glaciers. The hydrostatic line is less well positioned with errors over 2 km. Elevations along each line are selected from 6 candidate digital elevation models based on their agreement with ICESat elevation values and surface shape inferred from the Landsat imagery. Elevations along the hydrostatic line are converted to ice thicknesses by applying a firn-correction factor and a flotation criterion. BEDMAP-compiled data and other airborne data are compared to the ASAID elevations and ice thicknesses to arrive at quantitative (one-sigma) uncertainties of surface elevations of ±3.6, ±9.6, ±11.4, ±30 and ±100m for five ASAID-assigned confidence levels. Over one-half of the surface elevations along the grounded ice boundary and over one-third of the hydrostatic line elevations are ranked in the highest two confidence categories. A comparison between ASAID-calculated ice shelf thicknesses and BEDMAP-compiled data indicate a thin-ice bias of 41.2±71.3m for the ASAID ice thicknesses. The relationship between the seaward offset of the hydrostatic line from the grounded ice boundary only weakly matches a prediction based on beam theory. The ... Article in Journal/Newspaper Antarc* Antarctic Antarctica Ice Sheet Ice Shelf Ice Shelves International Polar Year Polar geoscience Sea ice The Cryosphere Earth-Prints (Istituto Nazionale di Geofisica e Vulcanologia) Antarctic The Antarctic The Cryosphere 5 3 569 588 |