Revising the retrieval technique of a long-term stratospheric HNO3 data set: from a constrained matrix inversion to the optimal estimation algorithm

The Ground-Based Millimeter-wave Spectrometer (GBMS) was designed and built at the State University of New York at Stony Brook in the early 1990s and since then has carried out many measurement campaigns of stratospheric O3, HNO3, CO and N2O at polar and mid-latitudes. Its HNO3 data set shed light o...

Full description

Bibliographic Details
Published in:Annales Geophysicae
Main Authors: Fiorucci, I., Muscari, G., de Zafra, R. L.
Other Authors: Fiorucci, I.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Roma2, Roma, Italia, Muscari, G.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Roma2, Roma, Italia, de Zafra, R. L.; Department of Physics and Astronomy, State University of New York at Stony Brook, Stony Brook, NY, USA, Istituto Nazionale di Geofisica e Vulcanologia, Sezione Roma2, Roma, Italia, Department of Physics and Astronomy, State University of New York at Stony Brook, Stony Brook, NY, USA
Format: Article in Journal/Newspaper
Language:English
Published: Copernicus Publications 2011
Subjects:
Online Access:http://hdl.handle.net/2122/7076
https://doi.org/10.5194/angeo-29-1317-2011
id ftingv:oai:www.earth-prints.org:2122/7076
record_format openpolar
institution Open Polar
collection Earth-Prints (Istituto Nazionale di Geofisica e Vulcanologia)
op_collection_id ftingv
language English
topic Atmospheric composition and structure
Instruments and techniques
01. Atmosphere::01.01. Atmosphere::01.01.01. Composition and Structure
01. Atmosphere::01.01. Atmosphere::01.01.04. Processes and Dynamics
01. Atmosphere::01.01. Atmosphere::01.01.08. Instruments and techniques
05. General::05.05. Mathematical geophysics::05.05.99. General or miscellaneous
spellingShingle Atmospheric composition and structure
Instruments and techniques
01. Atmosphere::01.01. Atmosphere::01.01.01. Composition and Structure
01. Atmosphere::01.01. Atmosphere::01.01.04. Processes and Dynamics
01. Atmosphere::01.01. Atmosphere::01.01.08. Instruments and techniques
05. General::05.05. Mathematical geophysics::05.05.99. General or miscellaneous
Fiorucci, I.
Muscari, G.
de Zafra, R. L.
Revising the retrieval technique of a long-term stratospheric HNO3 data set: from a constrained matrix inversion to the optimal estimation algorithm
topic_facet Atmospheric composition and structure
Instruments and techniques
01. Atmosphere::01.01. Atmosphere::01.01.01. Composition and Structure
01. Atmosphere::01.01. Atmosphere::01.01.04. Processes and Dynamics
01. Atmosphere::01.01. Atmosphere::01.01.08. Instruments and techniques
05. General::05.05. Mathematical geophysics::05.05.99. General or miscellaneous
description The Ground-Based Millimeter-wave Spectrometer (GBMS) was designed and built at the State University of New York at Stony Brook in the early 1990s and since then has carried out many measurement campaigns of stratospheric O3, HNO3, CO and N2O at polar and mid-latitudes. Its HNO3 data set shed light on HNO3 annual cycles over the Antarctic continent and contributed to the validation of both generations of the satellite-based JPL Microwave Limb Sounder (MLS). Following the increasing need for long-term data sets of stratospheric constituents, we resolved to establish a long-term GMBS observation site at the Arctic station of Thule (76.5 N, 68.8 W), Greenland, beginning in January 2009, in order to track the long- and short-term interactions between the changing climate and the seasonal processes tied to the ozone depletion phenomenon. Furthermore, we updated the retrieval algorithm adapting the Optimal Estimation (OE) method to GBMS spectral data in order to conform to the standard of the Network for the Detection of Atmospheric Composition Change (NDACC) microwave group, and to provide our retrievals with a set of averaging kernels that allow more straightforward comparisons with other data sets. The new OE algorithm was applied to GBMS HNO3 data sets from 1993 South Pole observations to date, in order to produce HNO3 version 2 (v2) profiles. A sample of results obtained at Antarctic latitudes in fall and winter and at mid-latitudes is shown here. In most conditions, v2 inversions show a sensitivity (i.e., sum of column elements of the averaging kernel matrix) of 100±20% from 20 to 45 km altitude, with somewhat worse (better) sensitivity in the Antarctic winter lower (upper) stratosphere. The 1 uncertainty on HNO3 v2 mixing ratio vertical profiles depends on altitude and is estimated at 15% or 0.3 ppbv, whichever is larger. Comparisons of v2 with former (v1) GBMS HNO3 vertical profiles, obtained employing the constrained matrix inversion method, show that v1 and v2 profiles are overall consistent. The main ...
author2 Fiorucci, I.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Roma2, Roma, Italia
Muscari, G.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Roma2, Roma, Italia
de Zafra, R. L.; Department of Physics and Astronomy, State University of New York at Stony Brook, Stony Brook, NY, USA
Istituto Nazionale di Geofisica e Vulcanologia, Sezione Roma2, Roma, Italia
Department of Physics and Astronomy, State University of New York at Stony Brook, Stony Brook, NY, USA
format Article in Journal/Newspaper
author Fiorucci, I.
Muscari, G.
de Zafra, R. L.
author_facet Fiorucci, I.
Muscari, G.
de Zafra, R. L.
author_sort Fiorucci, I.
title Revising the retrieval technique of a long-term stratospheric HNO3 data set: from a constrained matrix inversion to the optimal estimation algorithm
title_short Revising the retrieval technique of a long-term stratospheric HNO3 data set: from a constrained matrix inversion to the optimal estimation algorithm
title_full Revising the retrieval technique of a long-term stratospheric HNO3 data set: from a constrained matrix inversion to the optimal estimation algorithm
title_fullStr Revising the retrieval technique of a long-term stratospheric HNO3 data set: from a constrained matrix inversion to the optimal estimation algorithm
title_full_unstemmed Revising the retrieval technique of a long-term stratospheric HNO3 data set: from a constrained matrix inversion to the optimal estimation algorithm
title_sort revising the retrieval technique of a long-term stratospheric hno3 data set: from a constrained matrix inversion to the optimal estimation algorithm
publisher Copernicus Publications
publishDate 2011
url http://hdl.handle.net/2122/7076
https://doi.org/10.5194/angeo-29-1317-2011
geographic Antarctic
Arctic
Greenland
South Pole
The Antarctic
geographic_facet Antarctic
Arctic
Greenland
South Pole
The Antarctic
genre Antarc*
Antarctic
Arctic
Arctic
Greenland
South pole
South pole
Thule
genre_facet Antarc*
Antarctic
Arctic
Arctic
Greenland
South pole
South pole
Thule
op_relation Annales Geophysicae
7/29 (2011)
Brasseur, G. and Solomon, S.: Aeronomy of the middle atmosphere: Chemistry and Physics of the Stratosphere and Mesosphere, D. Reidel Pub. Co., Dordrecht, The Netherlands, 1984. Connor, B. J., Parrish, A., Tsou, J. J., and McCormick, M. P.: Error analysis for the ground-based microwave ozone measurements during STOIC, J. Geophys. Res., 100(D5), 9283–9291, 1995. de Zafra, R. L.: The ground-based measurements of stratospheric trace gases using quantitative millimeter wave emission spectroscopy, in Diagnostic tools in atmospheric physics, Proceedings of the international school of physics “Enrico Fermi”, 23– 54, Societ`a italiana di fisica, Bologna, 1995. de Zafra, R. L., Chan, V., Crewell, S., Trimble, C., and Reeves, J. M.: Millimeter wave spectroscopic measurements over the South Pole: 3. The behavior of stratospheric nitric acid through polar fall, winter, and spring, J. Geophys. Res., 102(D1), 1399–1410, 1997. Di Biagio, C., Muscari, G., di Sarra, A., de Zafra, R. L., Eriksen, P., Fiorucci, I., and Fu`a, D.: Evolution of temperature, O3, CO, and N2O profiles during the exceptional 2009 Arctic major stratospheric warming as observed by lidar and mm-wave spectroscopy at Thule (76.5 N, 68.8 W), Greenland, J. Geophys. Res., 115, D24315, doi:10.1029/2010JD014070, 2010. Fahey, D., Murphy, D., Kelly, K., Ko, M., Proffitt, M., Eubank, C., Ferry, G., Loewenstein, M., and Chan, K.: Measurements of Nitric Oxide and total reactive nitrogen in the Antarctic stratosphere: observations and chemical implications, J. Geophys. Res., 94(D14), 16665–16681, 1989. Fiorucci. I., Muscari, G., Bianchi, C., Di Girolamo, P., Esposito, F., Grieco, G., Summa, D., Bianchini, G., Palchetti, L., Cacciani, M., Di Iorio, T., Pavese, G., Cimini, D., and de Zafra, R. L.: Measurements of low amounts of precipitable water vapor by millimeter wave spectroscopy: An intercomparison with radiosonde, Raman lidar, and Fourier transform infrared data, J. Geophys. Res., 113, D14314, doi:10.1029/2008JD009831, 2008. Fiorucci, I., Muscari, G., Froidevaux, L., Santee, M. L., and De Zafra, R. L.: Establishing a long-term, global stratospheric HNO3 data record combining UARS MLS with Aura MLS data by means of ground-based measurements, AGU Fall Meeting, San Francisco, CA, USA, 14–18 December 2009, A21C-0218, 2009. Goyette, T. M., Guo, W., and De Lucia, F. C.: Variable temperature pressure broadening of HNO3 in the millimeter wave spectral region, J. Mol. Spectros., 46(4), 293–297, 1991. Haefele, A., De Wachter, E., Hocke, K., K¨ampfer, N., Nedoluha, G. E., Gomez, R. M., Eriksson, P., Forkman, P., Lambert, A., and Schwartz, M. J.: Validation of groundbased microwave radiometers at 22 GHz for stratospheric and mesospheric water vapor, J. Geophys. Res., 114, D23305, doi:10.1029/2009JD011997, 2009. Hoogen, R., Rozanov, V. V., and Burrows, J. P.: Ozone profiles from GOME satellite data: description and first validation Algorithm, J. Geophys. Res., 104(D7), 8263–8280, 1999. Janssen, M. A.: Atmospheric Remote Sensing by Microwave radiometry, John Wiley & Sons, Inc., New York, 1993. Kraus, J. D.: Radio Astronomy, McGraw-Hill, New York, 1966. Kuntz, M., Kopp, G., Berg, H., Hochschilda, G., and Krupa, R.: Joint retrieval of atmospheric constituent profiles from groundbased millimetre-wave measurements: ClO, HNO3, N2O, and O3,, J. Geophys Res. 104(D11), 13981–13992, 1999. Livesey N. J., Read, W. G., Froidevaux, L., Waters, J. W., Santee, M. L., Pumphrey, H. C., Wu, D. L., Shippony, Z., and Jarnot, R. F.: The UARS Microwave Limb Sounder version 5 data set: theory, characterization, and validation,J. Geophys. Res., 108(D13), 4378, doi:10.1029/2002JD002273, 2003. McDonald, M., de Zafra, R. L., and Muscari, G.: Millimeter wave spectroscopic measurements over the South Pole: 5. Morphology and evolution of HNO3 vertical distribution, 1993 versus 1995, J. Geophys. Res., 105(D14), 17739–17750, 2000. Muscari, G., Santee, M. L., and de Zafra, R. L.: Intercomparison of stratospheric HNO3 measurements over Antarctica: Groundbased millimeter-wave versus UARS/MLS version 5 retrievals, J. Geophys. Res., 107(D24), 4809, doi:10.1029/2002JD002546, 2002. Muscari, G., de Zafra, R. L., and Smyshlyaev, S.: Evolution of the NOy-N2O correlation in the Antarctic stratosphere during 1993 and 1995, J. Geophys. Res., 108(D14), 4428, doi:10.1029/2002JD002871, 2003. Muscari, G., di Sarra, A. G., de Zafra, R. L., Lucci, F., Baordo, F., Angelini, F., and Fiocco, G.: Middle atmospheric O3, CO, N2O, HNO3, and temperature profiles during the warm Arctic winter 2001–2002, J. Geophys. Res., 112, D14304, doi:10.1029/2006JD007849, 2007. Nagahama, T., Nakane, H., Fujinuma, Y., Ninomiya, M., Ogawa, H., and Fukui, Y.: Ground-based millimeter-wave observations of ozone in the upper stratosphere and mesosphere over Tsukuba, Earth Planets Space, 51, 1287–1296, 1999. Nedoluha, G., Bevilacqua, R., Gomez, R., Thacker, D., Waltman, W., and Pauls, T.: Ground-based measurements of water vapor in the middle atmosphere, J. Geophys. Res., 100(D2), 2927–2939, 1995. Newman, P. A., Nash, E. R., Kawa, S. R., Montzka, S. A., and Schauffler, S. M.: When will the Antarctic ozone hole recover?, Geophys. Res. Lett., 33, L12814, doi:10.1029/2005GL025232, 2006. Parrish, A., de Zafra, R. L., Solomon, P. M., and Barrett, J. W.: A ground-based technique for millimeter wave spectroscopic observations of stratospheric trace constituents, Radio Sci., 23, 106–118, 1988. Parrish, A., Connor, B. J., Tsou, J. J., Mc Dermid, I. S., and Chu, W. P.: Ground-Based Microwave Monitoring of Stratospheric Ozone, J. Geophys. Res., 97(D2), 2541–2546, 1992. Petkie, D. T., Helminger, P. A, Butler, R. A., Albert, S., and De Lucia, F. C.: The millimeter and submillimeter spectra of the ground and exited 9, 8, 7 and 6 vibrational states of HNO3, J. Mol. Spectrosc., 218, 127–130, 2003. Rodgers, C. D.: Retrieval of atmospheric temperature and composition from remote measurements of thermal radiation, Rev. Geophys. Space Ge., 14(4), 609–624, 1976. Rodgers, C. D.: Inverse method for atmospheric sounding, Series on atmospheric, oceanic and Planetary Physics – vol.2, Taylor, F. W., World Scientific Publishing Co. Pte LTd, Singapore, 2000. Rothman, L. S., Gordon, I. E., Barbe, A., Chris Benner, D., Bernath, P. F., Birk, M., Boudon, V., Brown, L. R., Campargue, A., Champion, J. P., Chance, K., Coudert, L. H., Dana, V., Devi, V. M., Fally, S., Flaud, J. M., Gamache, R. R., Goldman, A., Jacquemart, D., Kleiner, I., Lacome, N., Lafferty, W. J., Mandin, J. Y., Massie, S. T., Mikhailenko, S. N., Miller, C. E., Moazzen-Ahmadi, N., Naumenko, O. V., Nikitin, A. V., Orphal, J., Perevalov, V. I., Perrin, A., Predoi-Cross, A., Rinsland, C. P., Rotger, M., Simeckova, M., Smith, M. A. H., Sung, K., Tashkun, S. A., Tennyson, J., Toth, R. A., Vandaele, A. C., and Vander Auwera, J.: The HITRAN 2008 molecular spectroscopic database, J. Quant. Spectrosc. Ra., 110, 533–572, 2009. Santee, M., Lambert, A., Read, W., Livesey, N., Coeld, R., Cuddy, D., Daffer, W., Drouin, B., Froidevaux, L., Fuller, R., Jarnot, R., Knosp, B., Manney, G., Perun, V., Snyder, W., Stek, P., Thurstans, R., Wagner, P., Waters, J., Muscari, G., de Zafra, R., Dibb, J., Fahey, D., Popp, P., Marcy, T., Jucks K., Toon, G., Stachnik, R., Bernath, P., Boone, C., Walker, K., Urban, J., and Murtagh, D.: Validation of the Aura Microwave Limb Sounder HNO3 Measurements, J. Geophys. Res., 112, D24S40, doi:10.1029/2007JD008721, 2007. Solomon, S., Garcia, R. R., Rowland, F. S., andWuebbles, D. J.: On the depletion of Antarctic ozone, Nature, 321, 755–758, 1986. Tabazadeh, A., Santee, M. L., Danlin, M. Y., Pumphrey, H. C., Newman, P. A., Hamill, P. J., and Mergenthaler, J. L.: Quantifying Denitrification and Its Effect on Ozone Recovery, Science, 288(5470), 1407–1411, 2000. Tabazadeh, A., Jensen, E. J., Toon, O. B., Drdla, K., and Schoeberl, M. R.: Role of the Stratospheric Polar Freezing Belt in Denitrification, Science, 291(5513), 2591–2594, 2001. Twomey, S.: Introduction to the Mathematics of Inversion in Remote Sensing and Indirect Measurements, Developments in Geomathematics, 3, Elsevier Sci., New York, 1977. Waters, J.W., Froidevaux, L., Harwood, R. S., Jarnot, R. F., Pickett, H. M., Read, W. G., Siegel, P. H., Cofield, R. E., Filipiak, M. J., Flower, D. A., Holden, J. R., Lau, G. K., Livesey, N. J., Manney, G. L., Pumphrey, H. C., Santee, M. L., Wu, D. L., Cuddy, D. T., Lay, R. R., Loo, M. S., Vincent, S. Perun, V. S., Schwartz, M. J., Stek, P. C., Thurstans, R. P., Boyles, M. A., Chandra, K. M., Chavez, M. C., Chen, G. S., Chudasama, B. V., Dodge, R., Fuller, R. A., Girard, M. A., Jiang, J. H., Jiang, Y., Knosp, B. W., LaBelle, R. C., Lam, J. C., Lee, K. A., Miller, D., Oswald, J. E., Patel, N. C., Pukala, D. M., Quintero, O., Scaff, D. M., Van Snyder, W., Tope, M. C., Wagner, P. A., and Walch, M. J.: The Earth Observing System Microwave Limb Sounder (EOS MLS) on the Aura satellite, IEEE T. Geosci. Remote, 44, 5, doi:10.1109/TGRS.2006.873771, 2006. WMO(World Meteorological Organization): Scientific Assessment of Ozone Depletion: 2006, Global Ozone Research and Monitoring Project – Report No. 50, 572 pp., Geneva, Switzerland, 2007.
http://hdl.handle.net/2122/7076
doi:10.5194/angeo-29-1317-2011
op_rights open
op_doi https://doi.org/10.5194/angeo-29-1317-2011
https://doi.org/10.1029/2010JD014070
container_title Annales Geophysicae
container_volume 29
container_issue 7
container_start_page 1317
op_container_end_page 1330
_version_ 1766271553029275648
spelling ftingv:oai:www.earth-prints.org:2122/7076 2023-05-15T14:01:36+02:00 Revising the retrieval technique of a long-term stratospheric HNO3 data set: from a constrained matrix inversion to the optimal estimation algorithm Fiorucci, I. Muscari, G. de Zafra, R. L. Fiorucci, I.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Roma2, Roma, Italia Muscari, G.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Roma2, Roma, Italia de Zafra, R. L.; Department of Physics and Astronomy, State University of New York at Stony Brook, Stony Brook, NY, USA Istituto Nazionale di Geofisica e Vulcanologia, Sezione Roma2, Roma, Italia Department of Physics and Astronomy, State University of New York at Stony Brook, Stony Brook, NY, USA 2011-07-27 http://hdl.handle.net/2122/7076 https://doi.org/10.5194/angeo-29-1317-2011 en eng Copernicus Publications Annales Geophysicae 7/29 (2011) Brasseur, G. and Solomon, S.: Aeronomy of the middle atmosphere: Chemistry and Physics of the Stratosphere and Mesosphere, D. Reidel Pub. Co., Dordrecht, The Netherlands, 1984. Connor, B. J., Parrish, A., Tsou, J. J., and McCormick, M. P.: Error analysis for the ground-based microwave ozone measurements during STOIC, J. Geophys. Res., 100(D5), 9283–9291, 1995. de Zafra, R. L.: The ground-based measurements of stratospheric trace gases using quantitative millimeter wave emission spectroscopy, in Diagnostic tools in atmospheric physics, Proceedings of the international school of physics “Enrico Fermi”, 23– 54, Societ`a italiana di fisica, Bologna, 1995. de Zafra, R. L., Chan, V., Crewell, S., Trimble, C., and Reeves, J. M.: Millimeter wave spectroscopic measurements over the South Pole: 3. The behavior of stratospheric nitric acid through polar fall, winter, and spring, J. Geophys. Res., 102(D1), 1399–1410, 1997. Di Biagio, C., Muscari, G., di Sarra, A., de Zafra, R. L., Eriksen, P., Fiorucci, I., and Fu`a, D.: Evolution of temperature, O3, CO, and N2O profiles during the exceptional 2009 Arctic major stratospheric warming as observed by lidar and mm-wave spectroscopy at Thule (76.5 N, 68.8 W), Greenland, J. Geophys. Res., 115, D24315, doi:10.1029/2010JD014070, 2010. Fahey, D., Murphy, D., Kelly, K., Ko, M., Proffitt, M., Eubank, C., Ferry, G., Loewenstein, M., and Chan, K.: Measurements of Nitric Oxide and total reactive nitrogen in the Antarctic stratosphere: observations and chemical implications, J. Geophys. Res., 94(D14), 16665–16681, 1989. Fiorucci. I., Muscari, G., Bianchi, C., Di Girolamo, P., Esposito, F., Grieco, G., Summa, D., Bianchini, G., Palchetti, L., Cacciani, M., Di Iorio, T., Pavese, G., Cimini, D., and de Zafra, R. L.: Measurements of low amounts of precipitable water vapor by millimeter wave spectroscopy: An intercomparison with radiosonde, Raman lidar, and Fourier transform infrared data, J. Geophys. Res., 113, D14314, doi:10.1029/2008JD009831, 2008. Fiorucci, I., Muscari, G., Froidevaux, L., Santee, M. L., and De Zafra, R. L.: Establishing a long-term, global stratospheric HNO3 data record combining UARS MLS with Aura MLS data by means of ground-based measurements, AGU Fall Meeting, San Francisco, CA, USA, 14–18 December 2009, A21C-0218, 2009. Goyette, T. M., Guo, W., and De Lucia, F. C.: Variable temperature pressure broadening of HNO3 in the millimeter wave spectral region, J. Mol. Spectros., 46(4), 293–297, 1991. Haefele, A., De Wachter, E., Hocke, K., K¨ampfer, N., Nedoluha, G. E., Gomez, R. M., Eriksson, P., Forkman, P., Lambert, A., and Schwartz, M. J.: Validation of groundbased microwave radiometers at 22 GHz for stratospheric and mesospheric water vapor, J. Geophys. Res., 114, D23305, doi:10.1029/2009JD011997, 2009. Hoogen, R., Rozanov, V. V., and Burrows, J. P.: Ozone profiles from GOME satellite data: description and first validation Algorithm, J. Geophys. Res., 104(D7), 8263–8280, 1999. Janssen, M. A.: Atmospheric Remote Sensing by Microwave radiometry, John Wiley & Sons, Inc., New York, 1993. Kraus, J. D.: Radio Astronomy, McGraw-Hill, New York, 1966. Kuntz, M., Kopp, G., Berg, H., Hochschilda, G., and Krupa, R.: Joint retrieval of atmospheric constituent profiles from groundbased millimetre-wave measurements: ClO, HNO3, N2O, and O3,, J. Geophys Res. 104(D11), 13981–13992, 1999. Livesey N. J., Read, W. G., Froidevaux, L., Waters, J. W., Santee, M. L., Pumphrey, H. C., Wu, D. L., Shippony, Z., and Jarnot, R. F.: The UARS Microwave Limb Sounder version 5 data set: theory, characterization, and validation,J. Geophys. Res., 108(D13), 4378, doi:10.1029/2002JD002273, 2003. McDonald, M., de Zafra, R. L., and Muscari, G.: Millimeter wave spectroscopic measurements over the South Pole: 5. Morphology and evolution of HNO3 vertical distribution, 1993 versus 1995, J. Geophys. Res., 105(D14), 17739–17750, 2000. Muscari, G., Santee, M. L., and de Zafra, R. L.: Intercomparison of stratospheric HNO3 measurements over Antarctica: Groundbased millimeter-wave versus UARS/MLS version 5 retrievals, J. Geophys. Res., 107(D24), 4809, doi:10.1029/2002JD002546, 2002. Muscari, G., de Zafra, R. L., and Smyshlyaev, S.: Evolution of the NOy-N2O correlation in the Antarctic stratosphere during 1993 and 1995, J. Geophys. Res., 108(D14), 4428, doi:10.1029/2002JD002871, 2003. Muscari, G., di Sarra, A. G., de Zafra, R. L., Lucci, F., Baordo, F., Angelini, F., and Fiocco, G.: Middle atmospheric O3, CO, N2O, HNO3, and temperature profiles during the warm Arctic winter 2001–2002, J. Geophys. Res., 112, D14304, doi:10.1029/2006JD007849, 2007. Nagahama, T., Nakane, H., Fujinuma, Y., Ninomiya, M., Ogawa, H., and Fukui, Y.: Ground-based millimeter-wave observations of ozone in the upper stratosphere and mesosphere over Tsukuba, Earth Planets Space, 51, 1287–1296, 1999. Nedoluha, G., Bevilacqua, R., Gomez, R., Thacker, D., Waltman, W., and Pauls, T.: Ground-based measurements of water vapor in the middle atmosphere, J. Geophys. Res., 100(D2), 2927–2939, 1995. Newman, P. A., Nash, E. R., Kawa, S. R., Montzka, S. A., and Schauffler, S. M.: When will the Antarctic ozone hole recover?, Geophys. Res. Lett., 33, L12814, doi:10.1029/2005GL025232, 2006. Parrish, A., de Zafra, R. L., Solomon, P. M., and Barrett, J. W.: A ground-based technique for millimeter wave spectroscopic observations of stratospheric trace constituents, Radio Sci., 23, 106–118, 1988. Parrish, A., Connor, B. J., Tsou, J. J., Mc Dermid, I. S., and Chu, W. P.: Ground-Based Microwave Monitoring of Stratospheric Ozone, J. Geophys. Res., 97(D2), 2541–2546, 1992. Petkie, D. T., Helminger, P. A, Butler, R. A., Albert, S., and De Lucia, F. C.: The millimeter and submillimeter spectra of the ground and exited 9, 8, 7 and 6 vibrational states of HNO3, J. Mol. Spectrosc., 218, 127–130, 2003. Rodgers, C. D.: Retrieval of atmospheric temperature and composition from remote measurements of thermal radiation, Rev. Geophys. Space Ge., 14(4), 609–624, 1976. Rodgers, C. D.: Inverse method for atmospheric sounding, Series on atmospheric, oceanic and Planetary Physics – vol.2, Taylor, F. W., World Scientific Publishing Co. Pte LTd, Singapore, 2000. Rothman, L. S., Gordon, I. E., Barbe, A., Chris Benner, D., Bernath, P. F., Birk, M., Boudon, V., Brown, L. R., Campargue, A., Champion, J. P., Chance, K., Coudert, L. H., Dana, V., Devi, V. M., Fally, S., Flaud, J. M., Gamache, R. R., Goldman, A., Jacquemart, D., Kleiner, I., Lacome, N., Lafferty, W. J., Mandin, J. Y., Massie, S. T., Mikhailenko, S. N., Miller, C. E., Moazzen-Ahmadi, N., Naumenko, O. V., Nikitin, A. V., Orphal, J., Perevalov, V. I., Perrin, A., Predoi-Cross, A., Rinsland, C. P., Rotger, M., Simeckova, M., Smith, M. A. H., Sung, K., Tashkun, S. A., Tennyson, J., Toth, R. A., Vandaele, A. C., and Vander Auwera, J.: The HITRAN 2008 molecular spectroscopic database, J. Quant. Spectrosc. Ra., 110, 533–572, 2009. Santee, M., Lambert, A., Read, W., Livesey, N., Coeld, R., Cuddy, D., Daffer, W., Drouin, B., Froidevaux, L., Fuller, R., Jarnot, R., Knosp, B., Manney, G., Perun, V., Snyder, W., Stek, P., Thurstans, R., Wagner, P., Waters, J., Muscari, G., de Zafra, R., Dibb, J., Fahey, D., Popp, P., Marcy, T., Jucks K., Toon, G., Stachnik, R., Bernath, P., Boone, C., Walker, K., Urban, J., and Murtagh, D.: Validation of the Aura Microwave Limb Sounder HNO3 Measurements, J. Geophys. Res., 112, D24S40, doi:10.1029/2007JD008721, 2007. Solomon, S., Garcia, R. R., Rowland, F. S., andWuebbles, D. J.: On the depletion of Antarctic ozone, Nature, 321, 755–758, 1986. Tabazadeh, A., Santee, M. L., Danlin, M. Y., Pumphrey, H. C., Newman, P. A., Hamill, P. J., and Mergenthaler, J. L.: Quantifying Denitrification and Its Effect on Ozone Recovery, Science, 288(5470), 1407–1411, 2000. Tabazadeh, A., Jensen, E. J., Toon, O. B., Drdla, K., and Schoeberl, M. R.: Role of the Stratospheric Polar Freezing Belt in Denitrification, Science, 291(5513), 2591–2594, 2001. Twomey, S.: Introduction to the Mathematics of Inversion in Remote Sensing and Indirect Measurements, Developments in Geomathematics, 3, Elsevier Sci., New York, 1977. Waters, J.W., Froidevaux, L., Harwood, R. S., Jarnot, R. F., Pickett, H. M., Read, W. G., Siegel, P. H., Cofield, R. E., Filipiak, M. J., Flower, D. A., Holden, J. R., Lau, G. K., Livesey, N. J., Manney, G. L., Pumphrey, H. C., Santee, M. L., Wu, D. L., Cuddy, D. T., Lay, R. R., Loo, M. S., Vincent, S. Perun, V. S., Schwartz, M. J., Stek, P. C., Thurstans, R. P., Boyles, M. A., Chandra, K. M., Chavez, M. C., Chen, G. S., Chudasama, B. V., Dodge, R., Fuller, R. A., Girard, M. A., Jiang, J. H., Jiang, Y., Knosp, B. W., LaBelle, R. C., Lam, J. C., Lee, K. A., Miller, D., Oswald, J. E., Patel, N. C., Pukala, D. M., Quintero, O., Scaff, D. M., Van Snyder, W., Tope, M. C., Wagner, P. A., and Walch, M. J.: The Earth Observing System Microwave Limb Sounder (EOS MLS) on the Aura satellite, IEEE T. Geosci. Remote, 44, 5, doi:10.1109/TGRS.2006.873771, 2006. WMO(World Meteorological Organization): Scientific Assessment of Ozone Depletion: 2006, Global Ozone Research and Monitoring Project – Report No. 50, 572 pp., Geneva, Switzerland, 2007. http://hdl.handle.net/2122/7076 doi:10.5194/angeo-29-1317-2011 open Atmospheric composition and structure Instruments and techniques 01. Atmosphere::01.01. Atmosphere::01.01.01. Composition and Structure 01. Atmosphere::01.01. Atmosphere::01.01.04. Processes and Dynamics 01. Atmosphere::01.01. Atmosphere::01.01.08. Instruments and techniques 05. General::05.05. Mathematical geophysics::05.05.99. General or miscellaneous article 2011 ftingv https://doi.org/10.5194/angeo-29-1317-2011 https://doi.org/10.1029/2010JD014070 2022-07-29T06:05:58Z The Ground-Based Millimeter-wave Spectrometer (GBMS) was designed and built at the State University of New York at Stony Brook in the early 1990s and since then has carried out many measurement campaigns of stratospheric O3, HNO3, CO and N2O at polar and mid-latitudes. Its HNO3 data set shed light on HNO3 annual cycles over the Antarctic continent and contributed to the validation of both generations of the satellite-based JPL Microwave Limb Sounder (MLS). Following the increasing need for long-term data sets of stratospheric constituents, we resolved to establish a long-term GMBS observation site at the Arctic station of Thule (76.5 N, 68.8 W), Greenland, beginning in January 2009, in order to track the long- and short-term interactions between the changing climate and the seasonal processes tied to the ozone depletion phenomenon. Furthermore, we updated the retrieval algorithm adapting the Optimal Estimation (OE) method to GBMS spectral data in order to conform to the standard of the Network for the Detection of Atmospheric Composition Change (NDACC) microwave group, and to provide our retrievals with a set of averaging kernels that allow more straightforward comparisons with other data sets. The new OE algorithm was applied to GBMS HNO3 data sets from 1993 South Pole observations to date, in order to produce HNO3 version 2 (v2) profiles. A sample of results obtained at Antarctic latitudes in fall and winter and at mid-latitudes is shown here. In most conditions, v2 inversions show a sensitivity (i.e., sum of column elements of the averaging kernel matrix) of 100±20% from 20 to 45 km altitude, with somewhat worse (better) sensitivity in the Antarctic winter lower (upper) stratosphere. The 1 uncertainty on HNO3 v2 mixing ratio vertical profiles depends on altitude and is estimated at 15% or 0.3 ppbv, whichever is larger. Comparisons of v2 with former (v1) GBMS HNO3 vertical profiles, obtained employing the constrained matrix inversion method, show that v1 and v2 profiles are overall consistent. The main ... Article in Journal/Newspaper Antarc* Antarctic Arctic Arctic Greenland South pole South pole Thule Earth-Prints (Istituto Nazionale di Geofisica e Vulcanologia) Antarctic Arctic Greenland South Pole The Antarctic Annales Geophysicae 29 7 1317 1330