Bipolar climatology of GPS ionospheric scintillation at solar minimum

High-rate sampling data of GNSS (Global Navigation Satellite Systems) ionospheric scintillation acquired by a network of GISTM (GPS Ionospheric Scintillation and TEC Monitor) receivers located in the Svalbard Islands, in Norway and in Antarctica have been analyzed. The aim is to describe the “scinti...

Full description

Bibliographic Details
Published in:Radio Science
Main Authors: Alfonsi, Lu., Spogli, L., De Franceschi, G., Romano, V., Aquino, M., Dodson, A., Mitchell, C. N.
Other Authors: Alfonsi, Lu.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Roma2, Roma, Italia, Spogli, L.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Roma2, Roma, Italia, De Franceschi, G.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Roma2, Roma, Italia, Romano, V.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Roma2, Roma, Italia, Aquino, M.; Institute of Engineering Surveying and Space Geodesy (IESSG), University of Nottingham, Triumph Road, Nottingham NG7 2TU, United Kingdom, Dodson, A.; Institute of Engineering Surveying and Space Geodesy (IESSG), University of Nottingham, Triumph Road, Nottingham NG7 2TU, United Kingdom, Mitchell, C. N.; Department of Electronic and Electrical Engineering, University of Bath, University of Bath, BA2 7AY, Bath, United Kingdom, Istituto Nazionale di Geofisica e Vulcanologia, Sezione Roma2, Roma, Italia, Institute of Engineering Surveying and Space Geodesy (IESSG), University of Nottingham, Triumph Road, Nottingham NG7 2TU, United Kingdom, Department of Electronic and Electrical Engineering, University of Bath, University of Bath, BA2 7AY, Bath, United Kingdom
Format: Article in Journal/Newspaper
Language:English
Published: American Geophysical Union 2011
Subjects:
Online Access:http://hdl.handle.net/2122/7037
https://doi.org/10.1029/2010RS004571
id ftingv:oai:www.earth-prints.org:2122/7037
record_format openpolar
institution Open Polar
collection Earth-Prints (Istituto Nazionale di Geofisica e Vulcanologia)
op_collection_id ftingv
language English
topic ionospheric scintillations
climatology
high latitude ionosphere
space weather
01. Atmosphere::01.02. Ionosphere::01.02.04. Plasma Physics
01. Atmosphere::01.02. Ionosphere::01.02.07. Scintillations
05. General::05.01. Computational geophysics::05.01.03. Inverse methods
spellingShingle ionospheric scintillations
climatology
high latitude ionosphere
space weather
01. Atmosphere::01.02. Ionosphere::01.02.04. Plasma Physics
01. Atmosphere::01.02. Ionosphere::01.02.07. Scintillations
05. General::05.01. Computational geophysics::05.01.03. Inverse methods
Alfonsi, Lu.
Spogli, L.
De Franceschi, G.
Romano, V.
Aquino, M.
Dodson, A.
Mitchell, C. N.
Bipolar climatology of GPS ionospheric scintillation at solar minimum
topic_facet ionospheric scintillations
climatology
high latitude ionosphere
space weather
01. Atmosphere::01.02. Ionosphere::01.02.04. Plasma Physics
01. Atmosphere::01.02. Ionosphere::01.02.07. Scintillations
05. General::05.01. Computational geophysics::05.01.03. Inverse methods
description High-rate sampling data of GNSS (Global Navigation Satellite Systems) ionospheric scintillation acquired by a network of GISTM (GPS Ionospheric Scintillation and TEC Monitor) receivers located in the Svalbard Islands, in Norway and in Antarctica have been analyzed. The aim is to describe the “scintillation climatology” of the high latitude ionosphere over both the poles under quiet conditions of the near-Earth environment. For climatology we mean to assess the general recurrent features of the ionospheric irregularities dynamics and temporal evolution on long data series, trying to catch eventual correspondences with scintillation occurrence. In spite of the fact that the sites are not geomagnetically conjugate, long series of data recorded by the same kind of receivers provide a rare opportunity to draw a picture of the ionospheric features characterizing the scintillation conditions over high latitudes. The method adopted is the Ground Based Scintillation Climatology, which produces maps of scintillation occurrence and of TEC relative variation to investigate ionospheric scintillations scenario in terms of geomagnetic and geographic coordinates, Interplanetary Magnetic Field conditions and seasonal variability. By means of such a novel and original description of the ionospheric irregularities, our work provides insights to speculate on the cause-effect mechanisms producing scintillations, suggesting the roles of the high latitude ionospheric trough, of the auroral boundaries and of the polar cap ionosphere in hosting those irregularities causing scintillations over both the hemispheres at high latitude. The method can constitute a first step towards the development of new algorithms to forecast the scintillations during space weather events. Published RS0D05 1.7. Osservazioni di alta e media atmosfera 3.9. Fisica della magnetosfera, ionosfera e meteorologia spaziale JCR Journal restricted
author2 Alfonsi, Lu.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Roma2, Roma, Italia
Spogli, L.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Roma2, Roma, Italia
De Franceschi, G.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Roma2, Roma, Italia
Romano, V.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Roma2, Roma, Italia
Aquino, M.; Institute of Engineering Surveying and Space Geodesy (IESSG), University of Nottingham, Triumph Road, Nottingham NG7 2TU, United Kingdom
Dodson, A.; Institute of Engineering Surveying and Space Geodesy (IESSG), University of Nottingham, Triumph Road, Nottingham NG7 2TU, United Kingdom
Mitchell, C. N.; Department of Electronic and Electrical Engineering, University of Bath, University of Bath, BA2 7AY, Bath, United Kingdom
Istituto Nazionale di Geofisica e Vulcanologia, Sezione Roma2, Roma, Italia
Institute of Engineering Surveying and Space Geodesy (IESSG), University of Nottingham, Triumph Road, Nottingham NG7 2TU, United Kingdom
Department of Electronic and Electrical Engineering, University of Bath, University of Bath, BA2 7AY, Bath, United Kingdom
format Article in Journal/Newspaper
author Alfonsi, Lu.
Spogli, L.
De Franceschi, G.
Romano, V.
Aquino, M.
Dodson, A.
Mitchell, C. N.
author_facet Alfonsi, Lu.
Spogli, L.
De Franceschi, G.
Romano, V.
Aquino, M.
Dodson, A.
Mitchell, C. N.
author_sort Alfonsi, Lu.
title Bipolar climatology of GPS ionospheric scintillation at solar minimum
title_short Bipolar climatology of GPS ionospheric scintillation at solar minimum
title_full Bipolar climatology of GPS ionospheric scintillation at solar minimum
title_fullStr Bipolar climatology of GPS ionospheric scintillation at solar minimum
title_full_unstemmed Bipolar climatology of GPS ionospheric scintillation at solar minimum
title_sort bipolar climatology of gps ionospheric scintillation at solar minimum
publisher American Geophysical Union
publishDate 2011
url http://hdl.handle.net/2122/7037
https://doi.org/10.1029/2010RS004571
geographic Alta
Norway
Svalbard
geographic_facet Alta
Norway
Svalbard
genre Antarc*
Antarctica
Svalbard
genre_facet Antarc*
Antarctica
Svalbard
op_relation Radio Science
/46 (2011)
Aarons, J. (1982), Global morphology of ionospheric scintillation, Proc. IEEE, 70, 360–378. Aarons, J. (1993), The longitudinal morphology of equatorial F-layer irregularities relevant to their occurrence, Space Sci. Rev., 63, 209–243. Aarons, J. (1997), Global Positioning system phase fluctuations at auroral latitudes, J. Geophys. Res., 102, A8, 17,219-17,231. Baker, K.B. and Wing, S. (1989), A new magnetic coordinate system for conjugate studies at high latitudes, J. Geophys. Res., 94, 9139-9143, 1989. Basu, Su., and S. Basu (1985), Equatorial scintillations: Advances since ISEA-6, J. Atmos. Terr. Phys., 47, 753–768. Basu S., K. M. Groves, J. M. Quinn, P. Doherty (1999), A comparison of TEC fluctuations and scintillations at Ascension Island, Journal of Atmospheric and Solar-Terrestrial Physics, 61, 16, 1219-1226, DOI:10.1016/S1364-6826(99)00052-8. Coco D.S., Gaussiran TL, Coker C. (1995) Passive detection of sporadic E using GPS phase measurements. Radio Sci., 30, 1869-74. Feldstein, Y. I. (1963), On Morphology and Auroral and Magnetic Disturbances at High Latitudes, Geomagn. Aeron., 3, 138. Forte, B., and S. M. Radicella (2002), Problems in data treatment for ionospheric scintillation measurements, Radio Sci., 37(6), 1096, doi:10.1029/2001RS002508. Foster, J. C., et al. (2005), Multiradar observations of the polar tongue of ionization, J. Geophys. Res., 110, A09S31, doi:10.1029/2004JA010928. Holzworth, R. H. and Meng, C.-I. (1975), Mathematical representation of the auroral oval, Geophys. Res. Lett., 2, 377–380. Hunsucker, R.D., Hargreaves, J.K. (2003), The High-Latitude Ionosphere and its Effects on Radio Propagation, first ed Cambridge University Press, Cambridge, UK. Jayachandran, P. T., J. W.MacDougall, E. F. Donovan, J. M. Ruohoniemi, K. Liou, D. R. Moorcroft, and J.-P. St-Maurice (2003), Substorm associated changes in the high-latitude ionospheric convection, Geophys. Res. Lett., 30(20), 2064, doi:10.1029/2003GL017497. Kersley, L., S. E. Pryse, and N. S. Wheadon (1988), Amplitude and phase scintillation at high latitudes over northern Europe, Radio Sci., 23, 320–330. Kivanc¸, O¨ ., and R. A. Heelis (1997), Structures in ionospheric number density and velocity associated with polar cap ionization patches, J. Geophys. Res., 102, 307–318. Li G, B. Ning , Z. Ren., L. Hu, (2010), Statistics of GPS ionospheric scintillation and irregularities over polar regions at solar minimum, GPS Solut. 14:331–341, DOI 10.1007/s10291-009-0156-x. MacDougall, J. W. (1990a), Distribution of irregularities in the northern polar region determined from HILAT observations, Radio Sci., 25, 115–124. MacDougall, J. W. (1990b), The polar-cap scintillation zone, J. Geomagn. Geoelectr., 42, 777– 788. McComas, D.J. and Bame, S.J. and Barker, P. and Feldman, W.C. and Phillips, J.L. and Riley, P. and Griffee, J.W. (1998), Solar Wind Electron Proton Alpha Monitor (SWEPAM) for the Advanced Composition Explorer, Space Science Reviews, 563-612, 86, 1. McEwen D. J. and Harris D. P. (1996), Occurrence patterns of F layer patches over the north magnetic pole, Radio Sci., 31, 3, 619-628. Mannucci, A.J., Wilson, B.D., Edwards, C.D. (1993), A new method for monitoring the Earth ionosphere total electron content using the GPS global network, in: Proceedings of ION GPS-93, pp.1323–1332. Moen, J., Gulbrandsen, N., Lorentzen, D. A., and Carlson, H. C. (2007), On the MLT distribution of F region polar cap patches at night, Geophys. Res. Lett., 34, L14113, doi:10.1029/2007GL029632. Moen J., X. C. Qiu, H. C. Carlson, R. Fujii, and I.W. McCrea (2008), On the diurnal variability in F2-region plasma density above the EISCAT Svalbard radar, Ann. Geophys., 26, 2427–2433. Pryse S.E., K. L. Dewis, R. L. Balthazor, H. R. Middleton, and M. H. Denton (2005), The dayside high-latitude trough under quiet geomagnetic conditions: Radio tomography and the CTIP model, Annales Geophysicae, 23, 1199–1206. Pryse, S. E., L. Kersley, D. Malan, and G. J. Bishop (2006), Parameterization of the main ionospheric trough in the European sector, Radio Sci., 41, RS5S14, doi:10.1029/2005RS003364. Rino, C. L. (1979), A power law phase screen model for ionospheric scintillation. I-Weak Scatter. II-Strong scatter., Radio Sci., 14, 1135-1145 and 1147-1155. A. S. Rodger, R. J. Moffett, S. Quegan (1992), The role of ion drift in the formation of ionisation troughs in the mid- and high-latitude ionosphere--a review, Journal of Atmospheric and Terrestrial Physics, 54, 1, 1-30, DOI:10.1016/0021-9169(92)90082-V. Ruohoniemi, J. M., and R. A. Greenwald (2005), Dependencies of high-latitude plasma convection: Consideration of interplanetary magnetic field, seasonal and universal time factors in statistical patterns, J. Geophys. Res., 110, A09204, doi:10.1029/2004JA010815. Rodger, A. S., J. Smith (1989), Antarctic studies of the coupled ionosphere-magnetosphere system, Phil. Trans. R. Soc. Lond. A, 328, 271-287. Secan, J. A., R. M. Bussey, E. J. Fremouw, and Sa. Basu (1997), High-latitude upgrade to the Wideband ionospheric scintillation model, Radio Sci., 32, 1567-1574. Smith, C.W. and L'Heureux, J. and Ness, N.F. and Acuña, M.H. and Burlaga, L.F. and Scheifele, J. (1998), The ACE Magnetic Fields Experiment, Space Science Reviews, 613-632, 86, 1. Spogli, L., L. Alfonsi, G. De Franceschi, V. Romano, M. H. O. Aquino and A. Dodson (2009), Climatology of GPS ionospheric scintillations over high and mid-latitude European regions, Ann. Geophys., 27, 3429-3437. Spogli, L., L. Alfonsi, G. De Franceschi, V. Romano, M. H. O. Aquino and A. Dodson (2010), Climatology of GNSS ionospheric scintillation at high and mid latitudes under different solar activity conditions, Il Nuovo Cimento B, DOI 10.1393/ncb/i2010-10857-7. Taylor, J. R. (1997), An introduction to Error Analysis: The Study of Uncertainties in Physical Measurement, 2nd ed., University Science Books, USA. Van Dierendonck, A. J., Klobuchar, J. and Hua, Q. (1993), Ionospheric scintillation monitoring using commercial single frequency C/A code receivers, in: ION GPS-93 Proceedings of the Sixth International Technical Meeting of the Satellite Division of the Institute of Navigation, Salt Lake City, U.S.A., 22-24 September, 1333–1342. Vickrey, J. F., and M. C. Kelley, The effects of a conducting E layer on classical F region crossfield plasma diffusion, J. Geophys. Res., 87, 4461-4468, 1982. Webb D.F., and Allen J.H. (2004) Spacecraft and ground anomalies related to the October- November 2003 solar activity, Space Weather, 2(3), DOI 10.1029/2004SW000075. Wernik, A. W., L. Alfonsi, M. Materassi (2007), Scintillation modelling using in-situ data, Radio Sci., 42, No. 1, RS1002, 10.1029/2006RS003512 . Whalen, J. A. (1989), The daytime F layer trough and its relation to ionospheric-magnetospheric convection, J. Geophys. Res.-Space Phys., 94, 17 169–17 184.
http://hdl.handle.net/2122/7037
doi:10.1029/2010RS004571
op_rights restricted
op_doi https://doi.org/10.1029/2010RS004571
https://doi.org/10.1016/S1364-6826(99)00052-8
container_title Radio Science
container_volume 46
container_issue 3
container_start_page n/a
op_container_end_page n/a
_version_ 1766271552408518656
spelling ftingv:oai:www.earth-prints.org:2122/7037 2023-05-15T14:01:36+02:00 Bipolar climatology of GPS ionospheric scintillation at solar minimum Alfonsi, Lu. Spogli, L. De Franceschi, G. Romano, V. Aquino, M. Dodson, A. Mitchell, C. N. Alfonsi, Lu.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Roma2, Roma, Italia Spogli, L.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Roma2, Roma, Italia De Franceschi, G.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Roma2, Roma, Italia Romano, V.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Roma2, Roma, Italia Aquino, M.; Institute of Engineering Surveying and Space Geodesy (IESSG), University of Nottingham, Triumph Road, Nottingham NG7 2TU, United Kingdom Dodson, A.; Institute of Engineering Surveying and Space Geodesy (IESSG), University of Nottingham, Triumph Road, Nottingham NG7 2TU, United Kingdom Mitchell, C. N.; Department of Electronic and Electrical Engineering, University of Bath, University of Bath, BA2 7AY, Bath, United Kingdom Istituto Nazionale di Geofisica e Vulcanologia, Sezione Roma2, Roma, Italia Institute of Engineering Surveying and Space Geodesy (IESSG), University of Nottingham, Triumph Road, Nottingham NG7 2TU, United Kingdom Department of Electronic and Electrical Engineering, University of Bath, University of Bath, BA2 7AY, Bath, United Kingdom 2011-06-24 http://hdl.handle.net/2122/7037 https://doi.org/10.1029/2010RS004571 en eng American Geophysical Union Radio Science /46 (2011) Aarons, J. (1982), Global morphology of ionospheric scintillation, Proc. IEEE, 70, 360–378. Aarons, J. (1993), The longitudinal morphology of equatorial F-layer irregularities relevant to their occurrence, Space Sci. Rev., 63, 209–243. Aarons, J. (1997), Global Positioning system phase fluctuations at auroral latitudes, J. Geophys. Res., 102, A8, 17,219-17,231. Baker, K.B. and Wing, S. (1989), A new magnetic coordinate system for conjugate studies at high latitudes, J. Geophys. Res., 94, 9139-9143, 1989. Basu, Su., and S. Basu (1985), Equatorial scintillations: Advances since ISEA-6, J. Atmos. Terr. Phys., 47, 753–768. Basu S., K. M. Groves, J. M. Quinn, P. Doherty (1999), A comparison of TEC fluctuations and scintillations at Ascension Island, Journal of Atmospheric and Solar-Terrestrial Physics, 61, 16, 1219-1226, DOI:10.1016/S1364-6826(99)00052-8. Coco D.S., Gaussiran TL, Coker C. (1995) Passive detection of sporadic E using GPS phase measurements. Radio Sci., 30, 1869-74. Feldstein, Y. I. (1963), On Morphology and Auroral and Magnetic Disturbances at High Latitudes, Geomagn. Aeron., 3, 138. Forte, B., and S. M. Radicella (2002), Problems in data treatment for ionospheric scintillation measurements, Radio Sci., 37(6), 1096, doi:10.1029/2001RS002508. Foster, J. C., et al. (2005), Multiradar observations of the polar tongue of ionization, J. Geophys. Res., 110, A09S31, doi:10.1029/2004JA010928. Holzworth, R. H. and Meng, C.-I. (1975), Mathematical representation of the auroral oval, Geophys. Res. Lett., 2, 377–380. Hunsucker, R.D., Hargreaves, J.K. (2003), The High-Latitude Ionosphere and its Effects on Radio Propagation, first ed Cambridge University Press, Cambridge, UK. Jayachandran, P. T., J. W.MacDougall, E. F. Donovan, J. M. Ruohoniemi, K. Liou, D. R. Moorcroft, and J.-P. St-Maurice (2003), Substorm associated changes in the high-latitude ionospheric convection, Geophys. Res. Lett., 30(20), 2064, doi:10.1029/2003GL017497. Kersley, L., S. E. Pryse, and N. S. Wheadon (1988), Amplitude and phase scintillation at high latitudes over northern Europe, Radio Sci., 23, 320–330. Kivanc¸, O¨ ., and R. A. Heelis (1997), Structures in ionospheric number density and velocity associated with polar cap ionization patches, J. Geophys. Res., 102, 307–318. Li G, B. Ning , Z. Ren., L. Hu, (2010), Statistics of GPS ionospheric scintillation and irregularities over polar regions at solar minimum, GPS Solut. 14:331–341, DOI 10.1007/s10291-009-0156-x. MacDougall, J. W. (1990a), Distribution of irregularities in the northern polar region determined from HILAT observations, Radio Sci., 25, 115–124. MacDougall, J. W. (1990b), The polar-cap scintillation zone, J. Geomagn. Geoelectr., 42, 777– 788. McComas, D.J. and Bame, S.J. and Barker, P. and Feldman, W.C. and Phillips, J.L. and Riley, P. and Griffee, J.W. (1998), Solar Wind Electron Proton Alpha Monitor (SWEPAM) for the Advanced Composition Explorer, Space Science Reviews, 563-612, 86, 1. McEwen D. J. and Harris D. P. (1996), Occurrence patterns of F layer patches over the north magnetic pole, Radio Sci., 31, 3, 619-628. Mannucci, A.J., Wilson, B.D., Edwards, C.D. (1993), A new method for monitoring the Earth ionosphere total electron content using the GPS global network, in: Proceedings of ION GPS-93, pp.1323–1332. Moen, J., Gulbrandsen, N., Lorentzen, D. A., and Carlson, H. C. (2007), On the MLT distribution of F region polar cap patches at night, Geophys. Res. Lett., 34, L14113, doi:10.1029/2007GL029632. Moen J., X. C. Qiu, H. C. Carlson, R. Fujii, and I.W. McCrea (2008), On the diurnal variability in F2-region plasma density above the EISCAT Svalbard radar, Ann. Geophys., 26, 2427–2433. Pryse S.E., K. L. Dewis, R. L. Balthazor, H. R. Middleton, and M. H. Denton (2005), The dayside high-latitude trough under quiet geomagnetic conditions: Radio tomography and the CTIP model, Annales Geophysicae, 23, 1199–1206. Pryse, S. E., L. Kersley, D. Malan, and G. J. Bishop (2006), Parameterization of the main ionospheric trough in the European sector, Radio Sci., 41, RS5S14, doi:10.1029/2005RS003364. Rino, C. L. (1979), A power law phase screen model for ionospheric scintillation. I-Weak Scatter. II-Strong scatter., Radio Sci., 14, 1135-1145 and 1147-1155. A. S. Rodger, R. J. Moffett, S. Quegan (1992), The role of ion drift in the formation of ionisation troughs in the mid- and high-latitude ionosphere--a review, Journal of Atmospheric and Terrestrial Physics, 54, 1, 1-30, DOI:10.1016/0021-9169(92)90082-V. Ruohoniemi, J. M., and R. A. Greenwald (2005), Dependencies of high-latitude plasma convection: Consideration of interplanetary magnetic field, seasonal and universal time factors in statistical patterns, J. Geophys. Res., 110, A09204, doi:10.1029/2004JA010815. Rodger, A. S., J. Smith (1989), Antarctic studies of the coupled ionosphere-magnetosphere system, Phil. Trans. R. Soc. Lond. A, 328, 271-287. Secan, J. A., R. M. Bussey, E. J. Fremouw, and Sa. Basu (1997), High-latitude upgrade to the Wideband ionospheric scintillation model, Radio Sci., 32, 1567-1574. Smith, C.W. and L'Heureux, J. and Ness, N.F. and Acuña, M.H. and Burlaga, L.F. and Scheifele, J. (1998), The ACE Magnetic Fields Experiment, Space Science Reviews, 613-632, 86, 1. Spogli, L., L. Alfonsi, G. De Franceschi, V. Romano, M. H. O. Aquino and A. Dodson (2009), Climatology of GPS ionospheric scintillations over high and mid-latitude European regions, Ann. Geophys., 27, 3429-3437. Spogli, L., L. Alfonsi, G. De Franceschi, V. Romano, M. H. O. Aquino and A. Dodson (2010), Climatology of GNSS ionospheric scintillation at high and mid latitudes under different solar activity conditions, Il Nuovo Cimento B, DOI 10.1393/ncb/i2010-10857-7. Taylor, J. R. (1997), An introduction to Error Analysis: The Study of Uncertainties in Physical Measurement, 2nd ed., University Science Books, USA. Van Dierendonck, A. J., Klobuchar, J. and Hua, Q. (1993), Ionospheric scintillation monitoring using commercial single frequency C/A code receivers, in: ION GPS-93 Proceedings of the Sixth International Technical Meeting of the Satellite Division of the Institute of Navigation, Salt Lake City, U.S.A., 22-24 September, 1333–1342. Vickrey, J. F., and M. C. Kelley, The effects of a conducting E layer on classical F region crossfield plasma diffusion, J. Geophys. Res., 87, 4461-4468, 1982. Webb D.F., and Allen J.H. (2004) Spacecraft and ground anomalies related to the October- November 2003 solar activity, Space Weather, 2(3), DOI 10.1029/2004SW000075. Wernik, A. W., L. Alfonsi, M. Materassi (2007), Scintillation modelling using in-situ data, Radio Sci., 42, No. 1, RS1002, 10.1029/2006RS003512 . Whalen, J. A. (1989), The daytime F layer trough and its relation to ionospheric-magnetospheric convection, J. Geophys. Res.-Space Phys., 94, 17 169–17 184. http://hdl.handle.net/2122/7037 doi:10.1029/2010RS004571 restricted ionospheric scintillations climatology high latitude ionosphere space weather 01. Atmosphere::01.02. Ionosphere::01.02.04. Plasma Physics 01. Atmosphere::01.02. Ionosphere::01.02.07. Scintillations 05. General::05.01. Computational geophysics::05.01.03. Inverse methods article 2011 ftingv https://doi.org/10.1029/2010RS004571 https://doi.org/10.1016/S1364-6826(99)00052-8 2022-07-29T06:05:58Z High-rate sampling data of GNSS (Global Navigation Satellite Systems) ionospheric scintillation acquired by a network of GISTM (GPS Ionospheric Scintillation and TEC Monitor) receivers located in the Svalbard Islands, in Norway and in Antarctica have been analyzed. The aim is to describe the “scintillation climatology” of the high latitude ionosphere over both the poles under quiet conditions of the near-Earth environment. For climatology we mean to assess the general recurrent features of the ionospheric irregularities dynamics and temporal evolution on long data series, trying to catch eventual correspondences with scintillation occurrence. In spite of the fact that the sites are not geomagnetically conjugate, long series of data recorded by the same kind of receivers provide a rare opportunity to draw a picture of the ionospheric features characterizing the scintillation conditions over high latitudes. The method adopted is the Ground Based Scintillation Climatology, which produces maps of scintillation occurrence and of TEC relative variation to investigate ionospheric scintillations scenario in terms of geomagnetic and geographic coordinates, Interplanetary Magnetic Field conditions and seasonal variability. By means of such a novel and original description of the ionospheric irregularities, our work provides insights to speculate on the cause-effect mechanisms producing scintillations, suggesting the roles of the high latitude ionospheric trough, of the auroral boundaries and of the polar cap ionosphere in hosting those irregularities causing scintillations over both the hemispheres at high latitude. The method can constitute a first step towards the development of new algorithms to forecast the scintillations during space weather events. Published RS0D05 1.7. Osservazioni di alta e media atmosfera 3.9. Fisica della magnetosfera, ionosfera e meteorologia spaziale JCR Journal restricted Article in Journal/Newspaper Antarc* Antarctica Svalbard Earth-Prints (Istituto Nazionale di Geofisica e Vulcanologia) Alta Norway Svalbard Radio Science 46 3 n/a n/a