Water vapor sounding with the far infrared REFIR-PAD spectroradiometer from a high-altitude ground-based station during the ECOWAR campaign

The Radiation Explorer in the Far InfraRed-Prototype for Applications and Development (REFIR-PAD) spectroradiometer was operated from the Testa Grigia Italian-Alps station in March 2007 during the Earth Cooling by Water Vapour Radiation (ECOWAR) measurement campaign, obtaining downwelling radiance s...

Full description

Bibliographic Details
Published in:Journal of Geophysical Research
Main Authors: Bianchini, G., Palchetti, L., Muscari, G., Fiorucci, I., Di Girolamo, P., Di Iorio, T.
Other Authors: Bianchini, G.; Istituto di Fisica Applicata “Nello Carrara,” Consiglio Nazionale delle Ricerche, Sesto Fiorentino, Italy, Palchetti, L.; Istituto di Fisica Applicata “Nello Carrara,” Consiglio Nazionale delle Ricerche, Sesto Fiorentino, Italy, Muscari, G.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Roma2, Roma, Italia, Fiorucci, I.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Roma2, Roma, Italia, Di Girolamo, P.; Dipartimento di Ingegneria e Fisica dell’Ambiente, Università della Basilicata, Potenza, Italy, Di Iorio, T.; Dipartimento di Fisica, Università di Roma “La Sapienza,” Rome, Italy, Istituto di Fisica Applicata “Nello Carrara,” Consiglio Nazionale delle Ricerche, Sesto Fiorentino, Italy, Istituto Nazionale di Geofisica e Vulcanologia, Sezione Roma2, Roma, Italia, Dipartimento di Ingegneria e Fisica dell’Ambiente, Università della Basilicata, Potenza, Italy, Dipartimento di Fisica, Università di Roma “La Sapienza,” Rome, Italy
Format: Article in Journal/Newspaper
Language:English
Published: American Geophysical Union 2011
Subjects:
Online Access:http://hdl.handle.net/2122/6979
https://doi.org/10.1029/2010JD014530
id ftingv:oai:www.earth-prints.org:2122/6979
record_format openpolar
institution Open Polar
collection Earth-Prints (Istituto Nazionale di Geofisica e Vulcanologia)
op_collection_id ftingv
language English
topic tropospheric water vapor
IR spectroscopy
REFIR-PAD
ECOWAR
01. Atmosphere::01.01. Atmosphere::01.01.01. Composition and Structure
01. Atmosphere::01.01. Atmosphere::01.01.08. Instruments and techniques
spellingShingle tropospheric water vapor
IR spectroscopy
REFIR-PAD
ECOWAR
01. Atmosphere::01.01. Atmosphere::01.01.01. Composition and Structure
01. Atmosphere::01.01. Atmosphere::01.01.08. Instruments and techniques
Bianchini, G.
Palchetti, L.
Muscari, G.
Fiorucci, I.
Di Girolamo, P.
Di Iorio, T.
Water vapor sounding with the far infrared REFIR-PAD spectroradiometer from a high-altitude ground-based station during the ECOWAR campaign
topic_facet tropospheric water vapor
IR spectroscopy
REFIR-PAD
ECOWAR
01. Atmosphere::01.01. Atmosphere::01.01.01. Composition and Structure
01. Atmosphere::01.01. Atmosphere::01.01.08. Instruments and techniques
description The Radiation Explorer in the Far InfraRed-Prototype for Applications and Development (REFIR-PAD) spectroradiometer was operated from the Testa Grigia Italian-Alps station in March 2007 during the Earth Cooling by Water Vapour Radiation (ECOWAR) measurement campaign, obtaining downwelling radiance spectra in the 100–1100 cm−1 range, under clear-sky conditions and in the presence of cirrus clouds. The analysis of these measurements has proven that the instrument is capable of determining precipitable water vapor with a total uncertainty of 5–7% by using the far-infrared rotational band of water. The measurement is unaffected by the presence of cirri, whose optical depth can be instead retrieved as an additional parameter. Information on the vertical profiles of water vapor volume mixing ratio and temperature can also be retrieved for three altitude levels. The ability to measure the water vapor column with a simple, uncooled instrument, capable of operating continuously and with a time resolution of about 10 min, makes REFIR-PAD a very valuable instrument for meteorological and climatological studies for the characterization of the water vapor distribution. Published D02310 1.7. Osservazioni di alta e media atmosfera 1.10. TTC - Telerilevamento JCR Journal reserved
author2 Bianchini, G.; Istituto di Fisica Applicata “Nello Carrara,” Consiglio Nazionale delle Ricerche, Sesto Fiorentino, Italy
Palchetti, L.; Istituto di Fisica Applicata “Nello Carrara,” Consiglio Nazionale delle Ricerche, Sesto Fiorentino, Italy
Muscari, G.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Roma2, Roma, Italia
Fiorucci, I.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Roma2, Roma, Italia
Di Girolamo, P.; Dipartimento di Ingegneria e Fisica dell’Ambiente, Università della Basilicata, Potenza, Italy
Di Iorio, T.; Dipartimento di Fisica, Università di Roma “La Sapienza,” Rome, Italy
Istituto di Fisica Applicata “Nello Carrara,” Consiglio Nazionale delle Ricerche, Sesto Fiorentino, Italy
Istituto Nazionale di Geofisica e Vulcanologia, Sezione Roma2, Roma, Italia
Dipartimento di Ingegneria e Fisica dell’Ambiente, Università della Basilicata, Potenza, Italy
Dipartimento di Fisica, Università di Roma “La Sapienza,” Rome, Italy
format Article in Journal/Newspaper
author Bianchini, G.
Palchetti, L.
Muscari, G.
Fiorucci, I.
Di Girolamo, P.
Di Iorio, T.
author_facet Bianchini, G.
Palchetti, L.
Muscari, G.
Fiorucci, I.
Di Girolamo, P.
Di Iorio, T.
author_sort Bianchini, G.
title Water vapor sounding with the far infrared REFIR-PAD spectroradiometer from a high-altitude ground-based station during the ECOWAR campaign
title_short Water vapor sounding with the far infrared REFIR-PAD spectroradiometer from a high-altitude ground-based station during the ECOWAR campaign
title_full Water vapor sounding with the far infrared REFIR-PAD spectroradiometer from a high-altitude ground-based station during the ECOWAR campaign
title_fullStr Water vapor sounding with the far infrared REFIR-PAD spectroradiometer from a high-altitude ground-based station during the ECOWAR campaign
title_full_unstemmed Water vapor sounding with the far infrared REFIR-PAD spectroradiometer from a high-altitude ground-based station during the ECOWAR campaign
title_sort water vapor sounding with the far infrared refir-pad spectroradiometer from a high-altitude ground-based station during the ecowar campaign
publisher American Geophysical Union
publishDate 2011
url http://hdl.handle.net/2122/6979
https://doi.org/10.1029/2010JD014530
geographic Alta
geographic_facet Alta
genre Arctic
genre_facet Arctic
op_relation Journal of Geophysical Research
/116 (2011)
http://hdl.handle.net/2122/6345
Bhawar, R., et al. (2008), Spectrally resolved observations of Earth’s emission spectrum in the H2O rotation band, Geophys. Res. Lett., 35, L04812, doi:10.1029/2007GL032207. Bianchini, G., and L. Palchetti (2008), Technical Note: REFIR‐PAD level 1 data analysis and performance characterization, Atmos. Chem. Phys., 8, 3817–3826. Bianchini, G., L. Palchetti, and B. Carli (2006), A wide‐band nadir‐sounding spectroradiometer for the characterization of the Earth’s outgoing longwave radiation, Proc. SPIE Int. Soc. Opt. Eng., 6361, 63610A. Bianchini, G., L. Palchetti, A. Baglioni, and F. Castagnoli (2007), Farinfrared spectrally resolved broadband emission of the atmosphere from Morello and Gomito mountains near Florence, Proc. SPIE Int. Soc. Opt. Eng., 6745, 674518. Bösenberg, J. (1998), Ground‐based differential absorption lidar for watervapor and temperature profiling, Appl. Opt., 37, 3845–3860. Clough, S. A., M. J. Iacono, and J. L. Moncet (1992), Line‐by‐line calculations of atmospheric fluxes and cooling rates: Application to water vapor, J. Geophys. Res., 97, 15,761–15,785, doi:10.1029/92JD01419. Clough, S. A., M. W. Shephard, E. J. Mlawer, J. S. Delamere, M. J. Iacono, K. Cady‐Pereira, S. Boukabara, and P. D. Brown (2005), Atmospheric radiative transfer modeling: a summary of the AER codes: Short communication, J. Quant. Spectrosc. Radiat. Transfer, 91, 233–244. Delamere, J. S., S. A. Clough, V. H. Payne, E. J. Mlawer, D. D. Turner, and R. R. Gamache (2010), A far‐infrared radiative closure study in the Arctic: Application to water vapor, J. Geophys. Res., 115, D17106, doi:10.1029/2009JD012968. de Zafra, R. L., A. Parrish, P. M. Solomon, and J. W. Barrett (1983), A quasi continuous record of atmospheric opacity at l = 1.1 mm over 34 days at Mauna Kea observatory, Int. J. Infrared Millimeter Waves, 4, 757–765. Di Girolamo, P., R. Marchese, D. N. Whiteman, and B. B. Demoz (2004), Rotational Raman Lidar measurements of atmospheric temperature in the UV, Geophys. Res. Lett., 31, L01106, doi:10.1029/2003GL018342. Di Girolamo, P., D. Summa, and R. Ferretti (2009), Rotational Raman Lidar measurements for the characterization of stratosphere‐troposphere exchange mechanisms, J. Atmos. Oceanic Technol., 26, 1742–1762. Divakarla, M. G., C. D. Barnet, M. D. Goldberg, L. M. McMillin, E. Maddy, W. Wolf, L. Zhou, and X. Liu (2006), Validation of Atmospheric Infrared Sounder temperature and water vapor retrievals with matched radiosonde measurements and forecasts, J. Geophys. Res., 111, D09S15, doi:10.1029/ 2005JD006116. Elliott, W. P., and D. J. Gaffen (1991), On the utility of radiosonde humidity archives for climate studies, Bull. Am. Meteorol. Soc., 72, 1507–1520. England, M. N., R. A. Ferrare, S. H. Melfi, D. N. Whiteman, and T. A. Clark (1992), Atmospheric water vapor measurements: Comparison of microwave radiometry and lidar, J. Geophys. Res., 97, 899–916, doi:10.1029/91JD02384. Fiorucci, I., et al. (2008), Measurements of low amounts of precipitable water vapor by millimeter wave spectroscopy: An intercomparison with radiosonde, Raman lidar, and Fourier transform infrared data, J. Geophys. Res., 113, D14314, doi:10.1029/2008JD009831. Gordon, I. E., L. S. Rothman, R. R. Gamache, D. Jaquemart, C. Boone, P. F. Bernath, M. W. Shephard, J. S. Delamere, and S. A. Clough (2007), Current updates of the water‐vapor line list in HITRAN: A new “Diet” for air‐broadened half‐widths, J. Quant. Spectrosc. Radiat. Transfer, 108, 389–402, doi:10.1016/j.jqsrt.2007.06.009. James, F. (1994), Minuit, function minimization and error analysis, reference manual, D506, CERN, Geneva, Switzerland. Kiehl, J. T., and K. E. Trenberth (1997), Earth’s Annual Global Mean Energy Budget, Bull. Am. Meteorol. Soc., 78, 197–208. Kneizys, F. X., E. P. Shettle, W. O. Gallery, J. H. Chetwynd Jr., L. W. Abreu, J. E. A. Selby, R. W. Fenn, and R. A. McClatchey (1980), Atmospheric transmittance/radiance: Computer code LOWTRAN 5, AFGLTR‐ 80‐0670, Air Force Geophys. Lab., Hanscom AFB, Mass. Miloshevich, L. M., A. Paukkunen, H. Vömel, and S. J. Oltmans (2004), Development and validation of a time‐lag correction for Vaisala radiosonde humidity measurements, J. Atmos. Oceanic Technol., 21, 1305– 1327. Niro, F., K. Jucks, and J.‐M. Hartmann (2005), Spectral calculations in central and wing regions of CO2 IR bands, IV: Software and database for the computation of atmospheric spectra, J. Quant. Spectrosc. Radiat. Transfer, 95, 469–481. Palchetti, L., A. Barbis, J. E. Harries, and D. Lastrucci (1999), Design and mathematical modelling of the space‐borne far‐infrared Fourier transform spectrometer for REFIR experiment, Infrared Phys. Technol., 40, 367–377. Palchetti, L., G. Bianchini, F. Castagnoli, B. Carli, C. Serio, F. Esposito, V. Cuomo, R. Rizzi, and T. Maestri (2005), Breadboard of a Fouriertransform spectrometer for the Radiation Explorer in the Far Infrared atmospheric mission, Appl. Opt., 44, 2870–2878. Palchetti, L., C. Belotti, G. Bianchini, F. Castagnoli, B. Carli, U. Cortesi, M. Pellegrini, C. Camy‐Peyret, P. Jeseck, and Y. Té (2006), Technical note: First spectral measurement of the Earth’s upwelling emission using an uncooled wideband Fourier transform spectrometer, Atmos. Chem. Phys., 6, 5025–5030. Palchetti, L., G. Bianchini, B. Carli, U. Cortesi, and S. Del Bianco (2007), Measurement of the water vapour vertical profile and of the Earth’s outgoing far infrared flux, Atmos. Chem. Phys. Discuss., 7, 17,741–17,767. Rizzi, R., B. Carli, J. E. Harries, J. Leotin, C. Serio, A. Sutera, B. Bizzarri, R. Bonsignori, and S. Peskett (2001), Mission objectives and instrument requirements for the (REFIR) Radiation Explorer in the Far‐InfraRed mission: An outline after the end of phase B0, in Current Problems in Atmospheric Radiation, edited by W. L. Smith and Y. M. Timofeyev, pp. 567–570, A. Deepak, Hampton, Va. Rothman, L. S., et al. (2005), The HITRAN 2004 molecular spectroscopic database, J. Quant. Spectrosc. Radiat. Transfer, 96, 139–204. Serio, C., F. Esposito, G. Masiello, G. Pavese, M. R. Calvello, G. Grieco, V. Cuomo, H. L. Buijs, and C. B. Roy (2008), Interferometer for groundbased observations of emitted spectral radiance from the troposphere: Evaluation and retrieval performance, Appl. Opt., 47, 3909–3919. Shephard, M. W., S. A. Clough, V. H. Payne, W. L. Smith, S. Kireev, and K. E. Cady‐Pereira (2009), Performance of the line‐by‐line radiative transfer model (LBLRTM) for temperature and species retrievals: IASI case studies from JAIVEx, Atmos. Chem. Phys., 9, 7397–7417. Sinha, A., and J. E. Harries (1995), Water vapour and greenhouse trapping: The role of far infrared absorption, Geophys. Res. Lett., 22, 2147–2150, doi:10.1029/95GL01891. Smith, W. L., W. F. Feltz, R. O. Knuteson, H. E. Revercomb, H. M. Woolf, and H. B. Howell (1999), The retrieval of planetary boundary layer structure using ground‐based infrared spectral radiance measurement, J. Atmos. Oceanic Technol., 16, 323–333. Tobin, D. C., et al. (1999), Downwelling spectral radiance observations at the SHEBA ice station: Water vapor continuum measurements from 17 to 26mm, J. Geophys. Res., 104, 2081–2092, doi:10.1029/1998JD200057. Vömel, H., H. Selkirk, L. Miloshevich, J. Valverde‐Canossa, J. Valdés, E. Kyrö, R. Kivi, W. Stolz, G. Peng, and J. A. Diaz (2007), Radiation dry bias of the Vaisala RS92 humidity sensor, J. Atmos. Oceanic Technol., 24, 953–963. Wang, J. Y. (1974), On the estimation of low‐altitude water vapor profiles from ground‐based infrared measurements, J. Atmos. Sci., 31, 513–521.
http://hdl.handle.net/2122/6979
doi:10.1029/2010JD014530
op_rights restricted
op_doi https://doi.org/10.1029/2010JD014530
https://doi.org/10.1029/2007GL032207
container_title Journal of Geophysical Research
container_volume 116
container_issue D2
_version_ 1766302625888731136
spelling ftingv:oai:www.earth-prints.org:2122/6979 2023-05-15T14:28:28+02:00 Water vapor sounding with the far infrared REFIR-PAD spectroradiometer from a high-altitude ground-based station during the ECOWAR campaign Bianchini, G. Palchetti, L. Muscari, G. Fiorucci, I. Di Girolamo, P. Di Iorio, T. Bianchini, G.; Istituto di Fisica Applicata “Nello Carrara,” Consiglio Nazionale delle Ricerche, Sesto Fiorentino, Italy Palchetti, L.; Istituto di Fisica Applicata “Nello Carrara,” Consiglio Nazionale delle Ricerche, Sesto Fiorentino, Italy Muscari, G.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Roma2, Roma, Italia Fiorucci, I.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Roma2, Roma, Italia Di Girolamo, P.; Dipartimento di Ingegneria e Fisica dell’Ambiente, Università della Basilicata, Potenza, Italy Di Iorio, T.; Dipartimento di Fisica, Università di Roma “La Sapienza,” Rome, Italy Istituto di Fisica Applicata “Nello Carrara,” Consiglio Nazionale delle Ricerche, Sesto Fiorentino, Italy Istituto Nazionale di Geofisica e Vulcanologia, Sezione Roma2, Roma, Italia Dipartimento di Ingegneria e Fisica dell’Ambiente, Università della Basilicata, Potenza, Italy Dipartimento di Fisica, Università di Roma “La Sapienza,” Rome, Italy 2011-01-28 http://hdl.handle.net/2122/6979 https://doi.org/10.1029/2010JD014530 en eng American Geophysical Union Journal of Geophysical Research /116 (2011) http://hdl.handle.net/2122/6345 Bhawar, R., et al. (2008), Spectrally resolved observations of Earth’s emission spectrum in the H2O rotation band, Geophys. Res. Lett., 35, L04812, doi:10.1029/2007GL032207. Bianchini, G., and L. Palchetti (2008), Technical Note: REFIR‐PAD level 1 data analysis and performance characterization, Atmos. Chem. Phys., 8, 3817–3826. Bianchini, G., L. Palchetti, and B. Carli (2006), A wide‐band nadir‐sounding spectroradiometer for the characterization of the Earth’s outgoing longwave radiation, Proc. SPIE Int. Soc. Opt. Eng., 6361, 63610A. Bianchini, G., L. Palchetti, A. Baglioni, and F. Castagnoli (2007), Farinfrared spectrally resolved broadband emission of the atmosphere from Morello and Gomito mountains near Florence, Proc. SPIE Int. Soc. Opt. Eng., 6745, 674518. Bösenberg, J. (1998), Ground‐based differential absorption lidar for watervapor and temperature profiling, Appl. Opt., 37, 3845–3860. Clough, S. A., M. J. Iacono, and J. L. Moncet (1992), Line‐by‐line calculations of atmospheric fluxes and cooling rates: Application to water vapor, J. Geophys. Res., 97, 15,761–15,785, doi:10.1029/92JD01419. Clough, S. A., M. W. Shephard, E. J. Mlawer, J. S. Delamere, M. J. Iacono, K. Cady‐Pereira, S. Boukabara, and P. D. Brown (2005), Atmospheric radiative transfer modeling: a summary of the AER codes: Short communication, J. Quant. Spectrosc. Radiat. Transfer, 91, 233–244. Delamere, J. S., S. A. Clough, V. H. Payne, E. J. Mlawer, D. D. Turner, and R. R. Gamache (2010), A far‐infrared radiative closure study in the Arctic: Application to water vapor, J. Geophys. Res., 115, D17106, doi:10.1029/2009JD012968. de Zafra, R. L., A. Parrish, P. M. Solomon, and J. W. Barrett (1983), A quasi continuous record of atmospheric opacity at l = 1.1 mm over 34 days at Mauna Kea observatory, Int. J. Infrared Millimeter Waves, 4, 757–765. Di Girolamo, P., R. Marchese, D. N. Whiteman, and B. B. Demoz (2004), Rotational Raman Lidar measurements of atmospheric temperature in the UV, Geophys. Res. Lett., 31, L01106, doi:10.1029/2003GL018342. Di Girolamo, P., D. Summa, and R. Ferretti (2009), Rotational Raman Lidar measurements for the characterization of stratosphere‐troposphere exchange mechanisms, J. Atmos. Oceanic Technol., 26, 1742–1762. Divakarla, M. G., C. D. Barnet, M. D. Goldberg, L. M. McMillin, E. Maddy, W. Wolf, L. Zhou, and X. Liu (2006), Validation of Atmospheric Infrared Sounder temperature and water vapor retrievals with matched radiosonde measurements and forecasts, J. Geophys. Res., 111, D09S15, doi:10.1029/ 2005JD006116. Elliott, W. P., and D. J. Gaffen (1991), On the utility of radiosonde humidity archives for climate studies, Bull. Am. Meteorol. Soc., 72, 1507–1520. England, M. N., R. A. Ferrare, S. H. Melfi, D. N. Whiteman, and T. A. Clark (1992), Atmospheric water vapor measurements: Comparison of microwave radiometry and lidar, J. Geophys. Res., 97, 899–916, doi:10.1029/91JD02384. Fiorucci, I., et al. (2008), Measurements of low amounts of precipitable water vapor by millimeter wave spectroscopy: An intercomparison with radiosonde, Raman lidar, and Fourier transform infrared data, J. Geophys. Res., 113, D14314, doi:10.1029/2008JD009831. Gordon, I. E., L. S. Rothman, R. R. Gamache, D. Jaquemart, C. Boone, P. F. Bernath, M. W. Shephard, J. S. Delamere, and S. A. Clough (2007), Current updates of the water‐vapor line list in HITRAN: A new “Diet” for air‐broadened half‐widths, J. Quant. Spectrosc. Radiat. Transfer, 108, 389–402, doi:10.1016/j.jqsrt.2007.06.009. James, F. (1994), Minuit, function minimization and error analysis, reference manual, D506, CERN, Geneva, Switzerland. Kiehl, J. T., and K. E. Trenberth (1997), Earth’s Annual Global Mean Energy Budget, Bull. Am. Meteorol. Soc., 78, 197–208. Kneizys, F. X., E. P. Shettle, W. O. Gallery, J. H. Chetwynd Jr., L. W. Abreu, J. E. A. Selby, R. W. Fenn, and R. A. McClatchey (1980), Atmospheric transmittance/radiance: Computer code LOWTRAN 5, AFGLTR‐ 80‐0670, Air Force Geophys. Lab., Hanscom AFB, Mass. Miloshevich, L. M., A. Paukkunen, H. Vömel, and S. J. Oltmans (2004), Development and validation of a time‐lag correction for Vaisala radiosonde humidity measurements, J. Atmos. Oceanic Technol., 21, 1305– 1327. Niro, F., K. Jucks, and J.‐M. Hartmann (2005), Spectral calculations in central and wing regions of CO2 IR bands, IV: Software and database for the computation of atmospheric spectra, J. Quant. Spectrosc. Radiat. Transfer, 95, 469–481. Palchetti, L., A. Barbis, J. E. Harries, and D. Lastrucci (1999), Design and mathematical modelling of the space‐borne far‐infrared Fourier transform spectrometer for REFIR experiment, Infrared Phys. Technol., 40, 367–377. Palchetti, L., G. Bianchini, F. Castagnoli, B. Carli, C. Serio, F. Esposito, V. Cuomo, R. Rizzi, and T. Maestri (2005), Breadboard of a Fouriertransform spectrometer for the Radiation Explorer in the Far Infrared atmospheric mission, Appl. Opt., 44, 2870–2878. Palchetti, L., C. Belotti, G. Bianchini, F. Castagnoli, B. Carli, U. Cortesi, M. Pellegrini, C. Camy‐Peyret, P. Jeseck, and Y. Té (2006), Technical note: First spectral measurement of the Earth’s upwelling emission using an uncooled wideband Fourier transform spectrometer, Atmos. Chem. Phys., 6, 5025–5030. Palchetti, L., G. Bianchini, B. Carli, U. Cortesi, and S. Del Bianco (2007), Measurement of the water vapour vertical profile and of the Earth’s outgoing far infrared flux, Atmos. Chem. Phys. Discuss., 7, 17,741–17,767. Rizzi, R., B. Carli, J. E. Harries, J. Leotin, C. Serio, A. Sutera, B. Bizzarri, R. Bonsignori, and S. Peskett (2001), Mission objectives and instrument requirements for the (REFIR) Radiation Explorer in the Far‐InfraRed mission: An outline after the end of phase B0, in Current Problems in Atmospheric Radiation, edited by W. L. Smith and Y. M. Timofeyev, pp. 567–570, A. Deepak, Hampton, Va. Rothman, L. S., et al. (2005), The HITRAN 2004 molecular spectroscopic database, J. Quant. Spectrosc. Radiat. Transfer, 96, 139–204. Serio, C., F. Esposito, G. Masiello, G. Pavese, M. R. Calvello, G. Grieco, V. Cuomo, H. L. Buijs, and C. B. Roy (2008), Interferometer for groundbased observations of emitted spectral radiance from the troposphere: Evaluation and retrieval performance, Appl. Opt., 47, 3909–3919. Shephard, M. W., S. A. Clough, V. H. Payne, W. L. Smith, S. Kireev, and K. E. Cady‐Pereira (2009), Performance of the line‐by‐line radiative transfer model (LBLRTM) for temperature and species retrievals: IASI case studies from JAIVEx, Atmos. Chem. Phys., 9, 7397–7417. Sinha, A., and J. E. Harries (1995), Water vapour and greenhouse trapping: The role of far infrared absorption, Geophys. Res. Lett., 22, 2147–2150, doi:10.1029/95GL01891. Smith, W. L., W. F. Feltz, R. O. Knuteson, H. E. Revercomb, H. M. Woolf, and H. B. Howell (1999), The retrieval of planetary boundary layer structure using ground‐based infrared spectral radiance measurement, J. Atmos. Oceanic Technol., 16, 323–333. Tobin, D. C., et al. (1999), Downwelling spectral radiance observations at the SHEBA ice station: Water vapor continuum measurements from 17 to 26mm, J. Geophys. Res., 104, 2081–2092, doi:10.1029/1998JD200057. Vömel, H., H. Selkirk, L. Miloshevich, J. Valverde‐Canossa, J. Valdés, E. Kyrö, R. Kivi, W. Stolz, G. Peng, and J. A. Diaz (2007), Radiation dry bias of the Vaisala RS92 humidity sensor, J. Atmos. Oceanic Technol., 24, 953–963. Wang, J. Y. (1974), On the estimation of low‐altitude water vapor profiles from ground‐based infrared measurements, J. Atmos. Sci., 31, 513–521. http://hdl.handle.net/2122/6979 doi:10.1029/2010JD014530 restricted tropospheric water vapor IR spectroscopy REFIR-PAD ECOWAR 01. Atmosphere::01.01. Atmosphere::01.01.01. Composition and Structure 01. Atmosphere::01.01. Atmosphere::01.01.08. Instruments and techniques article 2011 ftingv https://doi.org/10.1029/2010JD014530 https://doi.org/10.1029/2007GL032207 2022-07-29T06:05:56Z The Radiation Explorer in the Far InfraRed-Prototype for Applications and Development (REFIR-PAD) spectroradiometer was operated from the Testa Grigia Italian-Alps station in March 2007 during the Earth Cooling by Water Vapour Radiation (ECOWAR) measurement campaign, obtaining downwelling radiance spectra in the 100–1100 cm−1 range, under clear-sky conditions and in the presence of cirrus clouds. The analysis of these measurements has proven that the instrument is capable of determining precipitable water vapor with a total uncertainty of 5–7% by using the far-infrared rotational band of water. The measurement is unaffected by the presence of cirri, whose optical depth can be instead retrieved as an additional parameter. Information on the vertical profiles of water vapor volume mixing ratio and temperature can also be retrieved for three altitude levels. The ability to measure the water vapor column with a simple, uncooled instrument, capable of operating continuously and with a time resolution of about 10 min, makes REFIR-PAD a very valuable instrument for meteorological and climatological studies for the characterization of the water vapor distribution. Published D02310 1.7. Osservazioni di alta e media atmosfera 1.10. TTC - Telerilevamento JCR Journal reserved Article in Journal/Newspaper Arctic Earth-Prints (Istituto Nazionale di Geofisica e Vulcanologia) Alta Journal of Geophysical Research 116 D2