Evolution of temperature, O3, CO, and N2O profiles during the exceptional 2009 Arctic major stratospheric warming as observed by lidar and mm-wave spectroscopy at Thule (76.5°N, 68.8°W), Greenland.

The 2009 Arctic sudden stratospheric warming (SSW) was the most intense event of this kind ever observed. Unique ground-based measurements of middle atmospheric profiles for temperature, O3, CO, and N2O obtained at Thule (76.5°N, 68.8°W), Greenland, in the period January – early March are used to sh...

Full description

Bibliographic Details
Published in:Journal of Geophysical Research: Atmospheres
Main Authors: Di Biagio, C., Muscari, G., di Sarra, A., de Zafra, R. L., Eriksen, P., Fiocco, G., Fiorucci, I., Fuà, D.
Other Authors: Di Biagio, C.; ENEA/UTMEA-TER, S. Maria di Galeria, Italy and Department of Earth Science, University of Siena, Siena, Italy, Muscari, G.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Roma2, Roma, Italia, di Sarra, A.; ENEA/UTMEA-TER, S. Maria di Galeria, Italy, de Zafra, R. L.; Department of Physics and Astronomy, Stony Brook University, Stony Brook, NY, USA, Eriksen, P.; Danish Meteorological Institute, Copenhagen, Denmark, Fiocco, G.; Department of Physics, “Sapienza” University of Rome, Rome, Italy, Fiorucci, I.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Roma2, Roma, Italia, Fuà, D.; Department of Physics, “Sapienza” University of Rome, Rome, Italy, ENEA/UTMEA-TER, S. Maria di Galeria, Italy and Department of Earth Science, University of Siena, Siena, Italy, Istituto Nazionale di Geofisica e Vulcanologia, Sezione Roma2, Roma, Italia, ENEA/UTMEA-TER, S. Maria di Galeria, Italy, Department of Physics and Astronomy, Stony Brook University, Stony Brook, NY, USA, Danish Meteorological Institute, Copenhagen, Denmark, Department of Physics, “Sapienza” University of Rome, Rome, Italy
Format: Article in Journal/Newspaper
Language:English
Published: American Geophysical Union 2010
Subjects:
O3
N2O
CO
Online Access:http://hdl.handle.net/2122/6237
https://doi.org/10.1029/2010JD014070
id ftingv:oai:www.earth-prints.org:2122/6237
record_format openpolar
institution Open Polar
collection Earth-Prints (Istituto Nazionale di Geofisica e Vulcanologia)
op_collection_id ftingv
language English
topic sudden stratospheric warming
winter polar stratosphere
temperature
O3
N2O
CO
01. Atmosphere::01.01. Atmosphere::01.01.01. Composition and Structure
01. Atmosphere::01.01. Atmosphere::01.01.04. Processes and Dynamics
spellingShingle sudden stratospheric warming
winter polar stratosphere
temperature
O3
N2O
CO
01. Atmosphere::01.01. Atmosphere::01.01.01. Composition and Structure
01. Atmosphere::01.01. Atmosphere::01.01.04. Processes and Dynamics
Di Biagio, C.
Muscari, G.
di Sarra, A.
de Zafra, R. L.
Eriksen, P.
Fiocco, G.
Fiorucci, I.
Fuà, D.
Evolution of temperature, O3, CO, and N2O profiles during the exceptional 2009 Arctic major stratospheric warming as observed by lidar and mm-wave spectroscopy at Thule (76.5°N, 68.8°W), Greenland.
topic_facet sudden stratospheric warming
winter polar stratosphere
temperature
O3
N2O
CO
01. Atmosphere::01.01. Atmosphere::01.01.01. Composition and Structure
01. Atmosphere::01.01. Atmosphere::01.01.04. Processes and Dynamics
description The 2009 Arctic sudden stratospheric warming (SSW) was the most intense event of this kind ever observed. Unique ground-based measurements of middle atmospheric profiles for temperature, O3, CO, and N2O obtained at Thule (76.5°N, 68.8°W), Greenland, in the period January – early March are used to show the evolution of the 2009 SSW in the region of its maximum intensity. The first sign of the SSW was detected at θ~2000 K on January 19, when a rapid decrease in CO mixing ratio took place. The first evidence of a temperature increase was observed at the same level on 22 January, the earliest date on which lidar measurements reached above ~50 km. The warming propagated from the upper to the lower stratosphere in 7 days and the record maximum temperature of 289 K was observed between 1300 and 1500 K potential temperature on 22 January. A strong vortex splitting was associated with the SSW. Stratospheric backward trajectories indicate that airmasses arriving to Thule during the warming peak underwent a rapid compression and an intense adiabatic warming of up to 50 K. The rapid advection of air from the extra-tropics was also occasionally observed to produce elevated values of N2O mixing ratio. Starting from mid-February the temperature profile and the N2O mixing ratio returned to the pre-warming values in the mid and upper stratosphere, indicating the reformation of the vortex at these levels. In late winter, vertical descent from starting altitudes of ~60 km is estimated from CO profiles to be 0.25±0.05 km/day. Published D24315 1.7. Osservazioni di alta e media atmosfera 1.10. TTC - Telerilevamento JCR Journal open
author2 Di Biagio, C.; ENEA/UTMEA-TER, S. Maria di Galeria, Italy and Department of Earth Science, University of Siena, Siena, Italy
Muscari, G.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Roma2, Roma, Italia
di Sarra, A.; ENEA/UTMEA-TER, S. Maria di Galeria, Italy
de Zafra, R. L.; Department of Physics and Astronomy, Stony Brook University, Stony Brook, NY, USA
Eriksen, P.; Danish Meteorological Institute, Copenhagen, Denmark
Fiocco, G.; Department of Physics, “Sapienza” University of Rome, Rome, Italy
Fiorucci, I.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Roma2, Roma, Italia
Fuà, D.; Department of Physics, “Sapienza” University of Rome, Rome, Italy
ENEA/UTMEA-TER, S. Maria di Galeria, Italy and Department of Earth Science, University of Siena, Siena, Italy
Istituto Nazionale di Geofisica e Vulcanologia, Sezione Roma2, Roma, Italia
ENEA/UTMEA-TER, S. Maria di Galeria, Italy
Department of Physics and Astronomy, Stony Brook University, Stony Brook, NY, USA
Danish Meteorological Institute, Copenhagen, Denmark
Department of Physics, “Sapienza” University of Rome, Rome, Italy
format Article in Journal/Newspaper
author Di Biagio, C.
Muscari, G.
di Sarra, A.
de Zafra, R. L.
Eriksen, P.
Fiocco, G.
Fiorucci, I.
Fuà, D.
author_facet Di Biagio, C.
Muscari, G.
di Sarra, A.
de Zafra, R. L.
Eriksen, P.
Fiocco, G.
Fiorucci, I.
Fuà, D.
author_sort Di Biagio, C.
title Evolution of temperature, O3, CO, and N2O profiles during the exceptional 2009 Arctic major stratospheric warming as observed by lidar and mm-wave spectroscopy at Thule (76.5°N, 68.8°W), Greenland.
title_short Evolution of temperature, O3, CO, and N2O profiles during the exceptional 2009 Arctic major stratospheric warming as observed by lidar and mm-wave spectroscopy at Thule (76.5°N, 68.8°W), Greenland.
title_full Evolution of temperature, O3, CO, and N2O profiles during the exceptional 2009 Arctic major stratospheric warming as observed by lidar and mm-wave spectroscopy at Thule (76.5°N, 68.8°W), Greenland.
title_fullStr Evolution of temperature, O3, CO, and N2O profiles during the exceptional 2009 Arctic major stratospheric warming as observed by lidar and mm-wave spectroscopy at Thule (76.5°N, 68.8°W), Greenland.
title_full_unstemmed Evolution of temperature, O3, CO, and N2O profiles during the exceptional 2009 Arctic major stratospheric warming as observed by lidar and mm-wave spectroscopy at Thule (76.5°N, 68.8°W), Greenland.
title_sort evolution of temperature, o3, co, and n2o profiles during the exceptional 2009 arctic major stratospheric warming as observed by lidar and mm-wave spectroscopy at thule (76.5°n, 68.8°w), greenland.
publisher American Geophysical Union
publishDate 2010
url http://hdl.handle.net/2122/6237
https://doi.org/10.1029/2010JD014070
geographic Alta
Arctic
Greenland
geographic_facet Alta
Arctic
Greenland
genre Arctic
Arctic
Greenland
Thule
genre_facet Arctic
Arctic
Greenland
Thule
op_relation Journal of Geophysical Research
/115 (2010)
Barnett, J. J., and M. Corney (1985), Middle atmosphere reference model derived from satellite data, Handbook for MAP, 16, 47-137. Charlton, A.J., and L. Polvani (2007), A new look at stratospheric sudden warmings. Part I: climatology and modeling benchmarcks, J. Climate, 20, 449-469. de Zafra, R. L. (1995), The ground-based measurements of stratospheric trace gases using quantitative millimeter wave emission spectroscopy, in Diagnostic Tools in Atmospheric Physics, Proc. of the Int. Sch. of Phys. “Enrico Fermi”, vol. 124, 23– 54, Soc. It. di Fis., Bologna, Italy. de Zafra, R. L., and G. Muscari (2004), CO as an important high-altitude tracer of dynamics in the polar stratosphere and mesosphere, J. Geophys. Res., 109, D06105, doi:10.1029/2003JD004099. di Sarra, A., M. Cacciani, G. Fiocco, D. Fuà, and T. S. Jørgensen (2002), Lidar observations of polar stratospheric clouds over northern Greenland in the period 1990-1997, J. Geophys. Res., 107(D12), doi:10.1029/2001JD001074. Fiorucci, I., et al. (2008), Measurements of low amounts of precipitable water vapor by millimeter wave spectroscopy: An intercomparison with radiosonde, Raman lidar, and Fourier transform infrared data, J. Geophys. Res., 113, D14314, doi:10.1029/2008JD009831. Keckhut, P., et al. (2004), Review of ozone and temperature lidar validations performed within the framework of the Network for theDetection of Stratospheric Change, J. Environ. Monit., 6, 721–733. Harada, Y., A. Goto, H. Hasegawa, and N. Fujikava (2010), A major stratospheric sudden warming event in January 2009, J. Atmos. Sci., in press. Labitzke, K, and H. 489 Van Loon (1988), Associations between the 11-year solar cycle, the QBO and the atmosphere. Part I: The troposphere and the stratosphere in the Northern Hemisphere winter, J. Atmos. Terr. Phys., 50, 197-206. Labitzke, K, and M. Kunze (2009), On the remarkable Arctic winter 2008/2009, J. Geophys. Res., 114, D00I02, doi:10.1029/2009JD012273. Manney, G. L., et al. (2005), The remarkable 2003-2004 winter and other recent warm winters in Arctic stratosphere since 1990s, J. Geophys. Res., 110, D04107, doi:10.1029/2004JD005367. Manney, G. L., et al. (2008), The evolution of the stratopause during the 2006 major warming: Satellite data and assimilated meteorological analyses, J. Geophys. Res., 113, D11115, doi:10.1029/2007JD009097. Manney, G. L., et al. (2009), Aura Microwave Limb Sounder observations of dynamics and transport during the record-breaking 2009 Arctic stratospheric major warming, Geophys. Res. Lett., 36, L12815, doi:10.1029/2009GL038586. Marenco, F., et al. (1997), Thermal structure of the winter middle atmosphere observed by lidar at Thule, Greenland, during 1993-1994, J. Atmos. Sol-Terr. Phys., 59 (2), 151- 158. Matthewman, N. J., J. G. Esler, A. J. Charlton-Perez, A. J., Polvani, L. M.(2009), A new look at stratospheric sudden warmings. Part III: Polar vortex evolution and vertical structure, J. Clim., 22, 1566-1585. Muscari, G., et al. (2007), Middle atmospheric O3, CO2, N2O, HNO3, and temperature profiles during the Arctic winter 2001-2002, J. Geophys. Res., 112, D14304, doi:10.1029/2006JD007849. Orsolini, Y. J., J. Urban, D. Murtagh, S. Lossow, and V. Lympasuvan (2010), Descent from the polar mesosphere and anomalously high stratopause observed in 8 years of water vapor and temperature 514 satellite observations by the Odin Sub-Millimetre Radiometer, J. Geophys. Res., 115, D12305, doi:10.1029/2009JD013501. Rodgers, C. D. (2000), Inverse Methods for Atmospheric Sounding: Theory and Practice, World Sci., Singapore. Schoeberl, M.R., (1978), Stratospheric warmings: observations and theory, Rev. Geophys. and Space Ge., 16 (4), 521-538. Schoeberl M.R., and L. C. Sparling (1994), Trajectory Modelling; Diagnostic Tools in Atmospheric Physics, Proc. S.I.F. Course CXVI, edited by G. Fiocco and G. Visconti, North-Holland, Amsterdam, 1994. Van Loon, H., and K. Labitzke (1987), The Southern Oscillation. Part V: the anomalies in the lower stratosphere of the Northern Hemisphere in winter and a comparison with the Quasi-Biennal Oscillation, Mon. Weather Rev., 115, 357-369.
http://hdl.handle.net/2122/6237
doi:10.1029/2010JD014070
op_rights open
op_doi https://doi.org/10.1029/2010JD014070
https://doi.org/10.1029/2003JD004099
container_title Journal of Geophysical Research: Atmospheres
container_volume 115
container_issue D24
_version_ 1766302303730532352
spelling ftingv:oai:www.earth-prints.org:2122/6237 2023-05-15T14:28:09+02:00 Evolution of temperature, O3, CO, and N2O profiles during the exceptional 2009 Arctic major stratospheric warming as observed by lidar and mm-wave spectroscopy at Thule (76.5°N, 68.8°W), Greenland. Di Biagio, C. Muscari, G. di Sarra, A. de Zafra, R. L. Eriksen, P. Fiocco, G. Fiorucci, I. Fuà, D. Di Biagio, C.; ENEA/UTMEA-TER, S. Maria di Galeria, Italy and Department of Earth Science, University of Siena, Siena, Italy Muscari, G.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Roma2, Roma, Italia di Sarra, A.; ENEA/UTMEA-TER, S. Maria di Galeria, Italy de Zafra, R. L.; Department of Physics and Astronomy, Stony Brook University, Stony Brook, NY, USA Eriksen, P.; Danish Meteorological Institute, Copenhagen, Denmark Fiocco, G.; Department of Physics, “Sapienza” University of Rome, Rome, Italy Fiorucci, I.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Roma2, Roma, Italia Fuà, D.; Department of Physics, “Sapienza” University of Rome, Rome, Italy ENEA/UTMEA-TER, S. Maria di Galeria, Italy and Department of Earth Science, University of Siena, Siena, Italy Istituto Nazionale di Geofisica e Vulcanologia, Sezione Roma2, Roma, Italia ENEA/UTMEA-TER, S. Maria di Galeria, Italy Department of Physics and Astronomy, Stony Brook University, Stony Brook, NY, USA Danish Meteorological Institute, Copenhagen, Denmark Department of Physics, “Sapienza” University of Rome, Rome, Italy 2010 http://hdl.handle.net/2122/6237 https://doi.org/10.1029/2010JD014070 en eng American Geophysical Union Journal of Geophysical Research /115 (2010) Barnett, J. J., and M. Corney (1985), Middle atmosphere reference model derived from satellite data, Handbook for MAP, 16, 47-137. Charlton, A.J., and L. Polvani (2007), A new look at stratospheric sudden warmings. Part I: climatology and modeling benchmarcks, J. Climate, 20, 449-469. de Zafra, R. L. (1995), The ground-based measurements of stratospheric trace gases using quantitative millimeter wave emission spectroscopy, in Diagnostic Tools in Atmospheric Physics, Proc. of the Int. Sch. of Phys. “Enrico Fermi”, vol. 124, 23– 54, Soc. It. di Fis., Bologna, Italy. de Zafra, R. L., and G. Muscari (2004), CO as an important high-altitude tracer of dynamics in the polar stratosphere and mesosphere, J. Geophys. Res., 109, D06105, doi:10.1029/2003JD004099. di Sarra, A., M. Cacciani, G. Fiocco, D. Fuà, and T. S. Jørgensen (2002), Lidar observations of polar stratospheric clouds over northern Greenland in the period 1990-1997, J. Geophys. Res., 107(D12), doi:10.1029/2001JD001074. Fiorucci, I., et al. (2008), Measurements of low amounts of precipitable water vapor by millimeter wave spectroscopy: An intercomparison with radiosonde, Raman lidar, and Fourier transform infrared data, J. Geophys. Res., 113, D14314, doi:10.1029/2008JD009831. Keckhut, P., et al. (2004), Review of ozone and temperature lidar validations performed within the framework of the Network for theDetection of Stratospheric Change, J. Environ. Monit., 6, 721–733. Harada, Y., A. Goto, H. Hasegawa, and N. Fujikava (2010), A major stratospheric sudden warming event in January 2009, J. Atmos. Sci., in press. Labitzke, K, and H. 489 Van Loon (1988), Associations between the 11-year solar cycle, the QBO and the atmosphere. Part I: The troposphere and the stratosphere in the Northern Hemisphere winter, J. Atmos. Terr. Phys., 50, 197-206. Labitzke, K, and M. Kunze (2009), On the remarkable Arctic winter 2008/2009, J. Geophys. Res., 114, D00I02, doi:10.1029/2009JD012273. Manney, G. L., et al. (2005), The remarkable 2003-2004 winter and other recent warm winters in Arctic stratosphere since 1990s, J. Geophys. Res., 110, D04107, doi:10.1029/2004JD005367. Manney, G. L., et al. (2008), The evolution of the stratopause during the 2006 major warming: Satellite data and assimilated meteorological analyses, J. Geophys. Res., 113, D11115, doi:10.1029/2007JD009097. Manney, G. L., et al. (2009), Aura Microwave Limb Sounder observations of dynamics and transport during the record-breaking 2009 Arctic stratospheric major warming, Geophys. Res. Lett., 36, L12815, doi:10.1029/2009GL038586. Marenco, F., et al. (1997), Thermal structure of the winter middle atmosphere observed by lidar at Thule, Greenland, during 1993-1994, J. Atmos. Sol-Terr. Phys., 59 (2), 151- 158. Matthewman, N. J., J. G. Esler, A. J. Charlton-Perez, A. J., Polvani, L. M.(2009), A new look at stratospheric sudden warmings. Part III: Polar vortex evolution and vertical structure, J. Clim., 22, 1566-1585. Muscari, G., et al. (2007), Middle atmospheric O3, CO2, N2O, HNO3, and temperature profiles during the Arctic winter 2001-2002, J. Geophys. Res., 112, D14304, doi:10.1029/2006JD007849. Orsolini, Y. J., J. Urban, D. Murtagh, S. Lossow, and V. Lympasuvan (2010), Descent from the polar mesosphere and anomalously high stratopause observed in 8 years of water vapor and temperature 514 satellite observations by the Odin Sub-Millimetre Radiometer, J. Geophys. Res., 115, D12305, doi:10.1029/2009JD013501. Rodgers, C. D. (2000), Inverse Methods for Atmospheric Sounding: Theory and Practice, World Sci., Singapore. Schoeberl, M.R., (1978), Stratospheric warmings: observations and theory, Rev. Geophys. and Space Ge., 16 (4), 521-538. Schoeberl M.R., and L. C. Sparling (1994), Trajectory Modelling; Diagnostic Tools in Atmospheric Physics, Proc. S.I.F. Course CXVI, edited by G. Fiocco and G. Visconti, North-Holland, Amsterdam, 1994. Van Loon, H., and K. Labitzke (1987), The Southern Oscillation. Part V: the anomalies in the lower stratosphere of the Northern Hemisphere in winter and a comparison with the Quasi-Biennal Oscillation, Mon. Weather Rev., 115, 357-369. http://hdl.handle.net/2122/6237 doi:10.1029/2010JD014070 open sudden stratospheric warming winter polar stratosphere temperature O3 N2O CO 01. Atmosphere::01.01. Atmosphere::01.01.01. Composition and Structure 01. Atmosphere::01.01. Atmosphere::01.01.04. Processes and Dynamics article 2010 ftingv https://doi.org/10.1029/2010JD014070 https://doi.org/10.1029/2003JD004099 2022-07-29T06:05:41Z The 2009 Arctic sudden stratospheric warming (SSW) was the most intense event of this kind ever observed. Unique ground-based measurements of middle atmospheric profiles for temperature, O3, CO, and N2O obtained at Thule (76.5°N, 68.8°W), Greenland, in the period January – early March are used to show the evolution of the 2009 SSW in the region of its maximum intensity. The first sign of the SSW was detected at θ~2000 K on January 19, when a rapid decrease in CO mixing ratio took place. The first evidence of a temperature increase was observed at the same level on 22 January, the earliest date on which lidar measurements reached above ~50 km. The warming propagated from the upper to the lower stratosphere in 7 days and the record maximum temperature of 289 K was observed between 1300 and 1500 K potential temperature on 22 January. A strong vortex splitting was associated with the SSW. Stratospheric backward trajectories indicate that airmasses arriving to Thule during the warming peak underwent a rapid compression and an intense adiabatic warming of up to 50 K. The rapid advection of air from the extra-tropics was also occasionally observed to produce elevated values of N2O mixing ratio. Starting from mid-February the temperature profile and the N2O mixing ratio returned to the pre-warming values in the mid and upper stratosphere, indicating the reformation of the vortex at these levels. In late winter, vertical descent from starting altitudes of ~60 km is estimated from CO profiles to be 0.25±0.05 km/day. Published D24315 1.7. Osservazioni di alta e media atmosfera 1.10. TTC - Telerilevamento JCR Journal open Article in Journal/Newspaper Arctic Arctic Greenland Thule Earth-Prints (Istituto Nazionale di Geofisica e Vulcanologia) Alta Arctic Greenland Journal of Geophysical Research: Atmospheres 115 D24