Dry-wet bedrock interface detection by radio echo sounding measurements

In this paper a method to distinguish a wet or dry bedrock-ice interface is proposed. It is based on the analysis of Radio Echo Sounding (RES) measurements, a widely employed method for determining bedrock topography in Antarctica. In particular, the RES system has played an important role in subgla...

Full description

Bibliographic Details
Published in:IEEE Transactions on Geoscience and Remote Sensing
Main Authors: Zirizzotti, A., Cafarella, L., Baskaradas, J. A., Tabacco, I. E., Urbini, S., Mangialetti, M., Bianchi, C.
Other Authors: Zirizzotti, A.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Roma2, Roma, Italia, Cafarella, L.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Roma2, Roma, Italia, Baskaradas, J. A.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Roma2, Roma, Italia, Tabacco, I. E.; Univ. di Milano - Sezione Geofisica, Milan, Italy, Urbini, S.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Roma2, Roma, Italia, Mangialetti, M.; Univ. di Milano - Sezione Geofisica, Milan, Italy, Bianchi, C.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Roma2, Roma, Italia, Istituto Nazionale di Geofisica e Vulcanologia, Sezione Roma2, Roma, Italia, Univ. di Milano - Sezione Geofisica, Milan, Italy
Format: Article in Journal/Newspaper
Language:English
Published: IEEE Geoscience and Remote Sensing Society 2010
Subjects:
Online Access:http://hdl.handle.net/2122/6214
https://doi.org/10.1109/TGRS.2009.2038900
id ftingv:oai:www.earth-prints.org:2122/6214
record_format openpolar
institution Open Polar
collection Earth-Prints (Istituto Nazionale di Geofisica e Vulcanologia)
op_collection_id ftingv
language English
topic RES systems
ice absorption
bedrock reflectivity
internal ice layers
02. Cryosphere::02.02. Glaciers::02.02.10. Instruments and techniques
spellingShingle RES systems
ice absorption
bedrock reflectivity
internal ice layers
02. Cryosphere::02.02. Glaciers::02.02.10. Instruments and techniques
Zirizzotti, A.
Cafarella, L.
Baskaradas, J. A.
Tabacco, I. E.
Urbini, S.
Mangialetti, M.
Bianchi, C.
Dry-wet bedrock interface detection by radio echo sounding measurements
topic_facet RES systems
ice absorption
bedrock reflectivity
internal ice layers
02. Cryosphere::02.02. Glaciers::02.02.10. Instruments and techniques
description In this paper a method to distinguish a wet or dry bedrock-ice interface is proposed. It is based on the analysis of Radio Echo Sounding (RES) measurements, a widely employed method for determining bedrock topography in Antarctica. In particular, the RES system has played an important role in subglacial lake exploration and hydrogeological studies at the bedrock-ice interface. Recently, bedrock characterization has been improved through the analysis of the power of radar echoes. Signal power depends on bedrock reflectivity and its specific physical condition. In this paper a linear model describing the loss term (internal ice absorption) is proposed. This model, together with other known quantities, contributes towards an assessment of power variation of bedrock reflectivity in order to determinate wet and dry bedrock interfaces in the Dome C region in Antarctica. Published 2343 - 2348 3.8. Geofisica per l'ambiente JCR Journal restricted
author2 Zirizzotti, A.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Roma2, Roma, Italia
Cafarella, L.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Roma2, Roma, Italia
Baskaradas, J. A.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Roma2, Roma, Italia
Tabacco, I. E.; Univ. di Milano - Sezione Geofisica, Milan, Italy
Urbini, S.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Roma2, Roma, Italia
Mangialetti, M.; Univ. di Milano - Sezione Geofisica, Milan, Italy
Bianchi, C.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Roma2, Roma, Italia
Istituto Nazionale di Geofisica e Vulcanologia, Sezione Roma2, Roma, Italia
Univ. di Milano - Sezione Geofisica, Milan, Italy
format Article in Journal/Newspaper
author Zirizzotti, A.
Cafarella, L.
Baskaradas, J. A.
Tabacco, I. E.
Urbini, S.
Mangialetti, M.
Bianchi, C.
author_facet Zirizzotti, A.
Cafarella, L.
Baskaradas, J. A.
Tabacco, I. E.
Urbini, S.
Mangialetti, M.
Bianchi, C.
author_sort Zirizzotti, A.
title Dry-wet bedrock interface detection by radio echo sounding measurements
title_short Dry-wet bedrock interface detection by radio echo sounding measurements
title_full Dry-wet bedrock interface detection by radio echo sounding measurements
title_fullStr Dry-wet bedrock interface detection by radio echo sounding measurements
title_full_unstemmed Dry-wet bedrock interface detection by radio echo sounding measurements
title_sort dry-wet bedrock interface detection by radio echo sounding measurements
publisher IEEE Geoscience and Remote Sensing Society
publishDate 2010
url http://hdl.handle.net/2122/6214
https://doi.org/10.1109/TGRS.2009.2038900
genre Annals of Glaciology
Antarc*
Antarctica
genre_facet Annals of Glaciology
Antarc*
Antarctica
op_relation IEEE Transactions on Geoscience and Remote Sensing
5/48 (2010)
1. R. Bell, M. Studinger, C.A. Shumman, M.A. Fahnestock and I. Joughin, “Large subglacial lakes in East Antarctica at the onset of fast-flowing ice streams”, Nature, vol. 445, pp. 904-907, 2007. 2. V.V. Bogorodsky, C.R. Bentley and P.E. Gudmandsen, “Radioglaciology”, Reidel Publishing Company, pp. , 1985. 3. S.P. Carter, D.D. Blankenship, M.E. Peters, D.A. Young, J.W. Holt and D.L. Morse, “Radar-based subglacial lake classification in Antarctica”, Geochem. Geophys. Geosyst., Vol. 8, doi:10.1029/ 2006GC001408, 2007. 4. H. Corr, J.C. Moore, K.W. Nicholls, “Radar absorption due to impurities in Antarctic ice”, Geophys. Res. Lett., vol. 20, num.11, pp. 1071-1074, 1993. 5. EPICA community members, “Eight glacial cycles from an Antarctic ice core”, Nature, vol. 429, pp. 623-628, 2004. 6. O. Eisen, F. Wilhelms, D. Seinhage, J. Schander, ”Instruments and Methods Improved method to determine radio-echo sounding reflector depths from ice-core profiles of permittivity and conductivity”, J. Glac., vol. 52, no. 177, pp. , 2006. 7. A. Forieri, I.E. Tabacco, A. Della Vedova, A. Zirizzotti, P. De Michelis, A. Passerini, "A new bedrock map of the Dome C area”, Terra Antartica Reports, ISSN 1723-7211, vol. 8, pp. 169-174, 2003. 8. S. Fujita, T. Matsuoka, T. Ishida, K. Matsuoka, S. Mae, “A summary of the complex dielectric permittivity of ice in the megahertz range and its applications for radar sounding of polar ice sheets”, Physics of Ice Core Records, pp. 185-212, Hokkaido University Press: Sapporo, 2000. 9. J.A. MacGregor, D.P. Winebrenner, H. Conway, K. Matsuoka, P.A. Mayewski and G.D. Clow, “Modeling englacial radar attenuation at Simple Dome, West Antarctica, using ice chemistry and temperature data”, J. Geophys. Res., vol. 112, F03008, doi:10.1029/2006JF000717, 2007. 10. R. Mulvaney and E. W. Wolff, “Spatial variability of the major chemistry of the Antarctic ice sheet”, Ann. Glaciol., vol. 20, pp. 440-447, 1994. 11. J.D. Paden, C.T. Allen, S. Gogineni, K.C. Jezek, D. Dahl-Jensen, L.B. Larsen, “Wideband measurements of ice sheet attenuation and basal scattering“, Geoscience and Remote Sensing Letters IEEE vol. 2, num. 2, pp. 164 – 168, 2005. 12. G.K.A. Oswald and S.P. Gogineni, “Recobery of subglacial water extent from Greenland radar survey data”, J. Galcyol., vol. 54, num. 184, pp. 94- 106, 2008. 13. M.E. Peters, D.D. Blankenship and D.L. Morse,“Analysis techniques for coherent airborne radar sounding: Application to West Antarctic ice streams”, J. Geophys. Res., vol. 110, B06303, doi:10.1029/2004JB003222, 2005. 14. L.A. Plewes and B. Hubbard, “A review of the use of radio-echo sounding in glaciology” Progress in Physical Geography, vol. 25, num. 2, pp. 203-236, 2001. 15. A.P. Kapitsa, J.K. Ridley, G.D. Robin, M.J. Siegert and I.A. Zotikov, “A large deep freshwater lake beneath the ice of central East Antarctica” Nature, vol. 381, pp. 684-686, 2006. 16. B. Kulessa, “A Critical Review of the Low-frequency Electrical Properties of Ice Sheets and Glaciers”, Journal of Environmental & Engineering Geophysics, vol. 12; pp. 23-36; DOI:10.2113/JEEG12.1.23, 2007. 17. M. Skolnik, (Ed): „Radar Handbook‟ (McGraw-Hill,1990, 2nd edn) Ch.1, 1990. 18. B. Stauffer, J. Fluckiger, E.W. Wolff and P.R.F. Barnes, “The EPICA deep ice cores: first results and perspectives”, Annals of Glaciology, vol. 39, pp. 93-100, 2004. 19. I.E. Tabacco, P. Cianfarra, A. Forieri, F. Salvini and A. Zirizotti, “Physiography and tectonic setting of the subglacial lake district between Vostok and Belgica subglacial highlands (Antarctica)”, Geophys. J. Int., vol. 165, pp. 1029–1040, 2006. 20. F.T. Ulaby, R.K. Moore, A.K. Fung “Microwave remote sensing fundamentals and radiometry” Addison-Wesley Pub. Co, 1981. 21. D. Wingham, J. Siegert, A. Shepherd and A.S. Muir, “Rapid discharge connects Antarctic subglacial lakes”, Nature, vol. 440, pp. 1033-1036, 2006. 22. E. Wolff et al., “EPICA Dome C Core EDC99 Dielectric Profiling Data. IGBP PAGES/World Data Center for Paleoclimatology Data Contribution” Series # 2004-037, NOAA/NGDC, Paleoclimatology Program, Boulder CO, USA, 2004.
http://hdl.handle.net/2122/6214
doi:10.1109/TGRS.2009.2038900
op_rights restricted
op_doi https://doi.org/10.1109/TGRS.2009.2038900
https://doi.org/10.1029/2006JF000717
container_title IEEE Transactions on Geoscience and Remote Sensing
container_volume 48
container_issue 5
container_start_page 2343
op_container_end_page 2348
_version_ 1766003721435611136
spelling ftingv:oai:www.earth-prints.org:2122/6214 2023-05-15T13:29:51+02:00 Dry-wet bedrock interface detection by radio echo sounding measurements Zirizzotti, A. Cafarella, L. Baskaradas, J. A. Tabacco, I. E. Urbini, S. Mangialetti, M. Bianchi, C. Zirizzotti, A.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Roma2, Roma, Italia Cafarella, L.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Roma2, Roma, Italia Baskaradas, J. A.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Roma2, Roma, Italia Tabacco, I. E.; Univ. di Milano - Sezione Geofisica, Milan, Italy Urbini, S.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Roma2, Roma, Italia Mangialetti, M.; Univ. di Milano - Sezione Geofisica, Milan, Italy Bianchi, C.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Roma2, Roma, Italia Istituto Nazionale di Geofisica e Vulcanologia, Sezione Roma2, Roma, Italia Univ. di Milano - Sezione Geofisica, Milan, Italy 2010-04 http://hdl.handle.net/2122/6214 https://doi.org/10.1109/TGRS.2009.2038900 en eng IEEE Geoscience and Remote Sensing Society IEEE Transactions on Geoscience and Remote Sensing 5/48 (2010) 1. R. Bell, M. Studinger, C.A. Shumman, M.A. Fahnestock and I. Joughin, “Large subglacial lakes in East Antarctica at the onset of fast-flowing ice streams”, Nature, vol. 445, pp. 904-907, 2007. 2. V.V. Bogorodsky, C.R. Bentley and P.E. Gudmandsen, “Radioglaciology”, Reidel Publishing Company, pp. , 1985. 3. S.P. Carter, D.D. Blankenship, M.E. Peters, D.A. Young, J.W. Holt and D.L. Morse, “Radar-based subglacial lake classification in Antarctica”, Geochem. Geophys. Geosyst., Vol. 8, doi:10.1029/ 2006GC001408, 2007. 4. H. Corr, J.C. Moore, K.W. Nicholls, “Radar absorption due to impurities in Antarctic ice”, Geophys. Res. Lett., vol. 20, num.11, pp. 1071-1074, 1993. 5. EPICA community members, “Eight glacial cycles from an Antarctic ice core”, Nature, vol. 429, pp. 623-628, 2004. 6. O. Eisen, F. Wilhelms, D. Seinhage, J. Schander, ”Instruments and Methods Improved method to determine radio-echo sounding reflector depths from ice-core profiles of permittivity and conductivity”, J. Glac., vol. 52, no. 177, pp. , 2006. 7. A. Forieri, I.E. Tabacco, A. Della Vedova, A. Zirizzotti, P. De Michelis, A. Passerini, "A new bedrock map of the Dome C area”, Terra Antartica Reports, ISSN 1723-7211, vol. 8, pp. 169-174, 2003. 8. S. Fujita, T. Matsuoka, T. Ishida, K. Matsuoka, S. Mae, “A summary of the complex dielectric permittivity of ice in the megahertz range and its applications for radar sounding of polar ice sheets”, Physics of Ice Core Records, pp. 185-212, Hokkaido University Press: Sapporo, 2000. 9. J.A. MacGregor, D.P. Winebrenner, H. Conway, K. Matsuoka, P.A. Mayewski and G.D. Clow, “Modeling englacial radar attenuation at Simple Dome, West Antarctica, using ice chemistry and temperature data”, J. Geophys. Res., vol. 112, F03008, doi:10.1029/2006JF000717, 2007. 10. R. Mulvaney and E. W. Wolff, “Spatial variability of the major chemistry of the Antarctic ice sheet”, Ann. Glaciol., vol. 20, pp. 440-447, 1994. 11. J.D. Paden, C.T. Allen, S. Gogineni, K.C. Jezek, D. Dahl-Jensen, L.B. Larsen, “Wideband measurements of ice sheet attenuation and basal scattering“, Geoscience and Remote Sensing Letters IEEE vol. 2, num. 2, pp. 164 – 168, 2005. 12. G.K.A. Oswald and S.P. Gogineni, “Recobery of subglacial water extent from Greenland radar survey data”, J. Galcyol., vol. 54, num. 184, pp. 94- 106, 2008. 13. M.E. Peters, D.D. Blankenship and D.L. Morse,“Analysis techniques for coherent airborne radar sounding: Application to West Antarctic ice streams”, J. Geophys. Res., vol. 110, B06303, doi:10.1029/2004JB003222, 2005. 14. L.A. Plewes and B. Hubbard, “A review of the use of radio-echo sounding in glaciology” Progress in Physical Geography, vol. 25, num. 2, pp. 203-236, 2001. 15. A.P. Kapitsa, J.K. Ridley, G.D. Robin, M.J. Siegert and I.A. Zotikov, “A large deep freshwater lake beneath the ice of central East Antarctica” Nature, vol. 381, pp. 684-686, 2006. 16. B. Kulessa, “A Critical Review of the Low-frequency Electrical Properties of Ice Sheets and Glaciers”, Journal of Environmental & Engineering Geophysics, vol. 12; pp. 23-36; DOI:10.2113/JEEG12.1.23, 2007. 17. M. Skolnik, (Ed): „Radar Handbook‟ (McGraw-Hill,1990, 2nd edn) Ch.1, 1990. 18. B. Stauffer, J. Fluckiger, E.W. Wolff and P.R.F. Barnes, “The EPICA deep ice cores: first results and perspectives”, Annals of Glaciology, vol. 39, pp. 93-100, 2004. 19. I.E. Tabacco, P. Cianfarra, A. Forieri, F. Salvini and A. Zirizotti, “Physiography and tectonic setting of the subglacial lake district between Vostok and Belgica subglacial highlands (Antarctica)”, Geophys. J. Int., vol. 165, pp. 1029–1040, 2006. 20. F.T. Ulaby, R.K. Moore, A.K. Fung “Microwave remote sensing fundamentals and radiometry” Addison-Wesley Pub. Co, 1981. 21. D. Wingham, J. Siegert, A. Shepherd and A.S. Muir, “Rapid discharge connects Antarctic subglacial lakes”, Nature, vol. 440, pp. 1033-1036, 2006. 22. E. Wolff et al., “EPICA Dome C Core EDC99 Dielectric Profiling Data. IGBP PAGES/World Data Center for Paleoclimatology Data Contribution” Series # 2004-037, NOAA/NGDC, Paleoclimatology Program, Boulder CO, USA, 2004. http://hdl.handle.net/2122/6214 doi:10.1109/TGRS.2009.2038900 restricted RES systems ice absorption bedrock reflectivity internal ice layers 02. Cryosphere::02.02. Glaciers::02.02.10. Instruments and techniques article 2010 ftingv https://doi.org/10.1109/TGRS.2009.2038900 https://doi.org/10.1029/2006JF000717 2022-07-29T06:05:41Z In this paper a method to distinguish a wet or dry bedrock-ice interface is proposed. It is based on the analysis of Radio Echo Sounding (RES) measurements, a widely employed method for determining bedrock topography in Antarctica. In particular, the RES system has played an important role in subglacial lake exploration and hydrogeological studies at the bedrock-ice interface. Recently, bedrock characterization has been improved through the analysis of the power of radar echoes. Signal power depends on bedrock reflectivity and its specific physical condition. In this paper a linear model describing the loss term (internal ice absorption) is proposed. This model, together with other known quantities, contributes towards an assessment of power variation of bedrock reflectivity in order to determinate wet and dry bedrock interfaces in the Dome C region in Antarctica. Published 2343 - 2348 3.8. Geofisica per l'ambiente JCR Journal restricted Article in Journal/Newspaper Annals of Glaciology Antarc* Antarctica Earth-Prints (Istituto Nazionale di Geofisica e Vulcanologia) IEEE Transactions on Geoscience and Remote Sensing 48 5 2343 2348