Palynomorphs from a sediment core reveal a sudden remarkably warm Antarctica during the middle Miocene

An exceptional triple palynological signal (unusually high abundance of marine, freshwater, and terrestrial palynomorphs) recovered from a core collected during the 2007 ANDRILL (Antarctic geologic drilling program) campaign in the Ross Sea, Antarctica, provides constraints for the Middle Miocene Cl...

Full description

Bibliographic Details
Published in:Geology
Main Authors: Warny, S., Askin, R. A., Hannah, M. J., Mohr, B. A. R., Raine, J. I., Harwood, D. M., Florindo, F., SMS Science Team
Other Authors: Warny, S.; Department of Geology and Geophysics, and Museum of Natural Science, E235 Howe-Russell, Louisiana State University, Baton Rouge, Louisiana 70803, USA, Askin, R. A.; Department of Geology and Geophysics, and Museum of Natural Science, E235 Howe-Russell, Louisiana State University, Baton Rouge, Louisiana 70803, USA, Hannah, M. J.; School of Geography, Environment and Earth Sciences, Antarctic Research Centre, Victoria University of Wellington, PO Box 600, Wellington, New Zealand, Mohr, B. A. R.; Museum of Natural History, Collections, Invalidenstrasse 43, 10115 Berlin, Germany, Raine, J. I.; GNS Science, PO Box 30368, Lower Hutt, New Zealand, Harwood, D. M.; Department of Geosciences, and ANDRILL Science Management Office, 214 Bessey Hall, University of Nebraska–Lincoln, Lincoln, Nebraska 68588-0340, USA, Florindo, F.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Roma2, Roma, Italia, SMS Science Team; http://andrill.org/projects/sms/team.html, Department of Geology and Geophysics, and Museum of Natural Science, E235 Howe-Russell, Louisiana State University, Baton Rouge, Louisiana 70803, USA, School of Geography, Environment and Earth Sciences, Antarctic Research Centre, Victoria University of Wellington, PO Box 600, Wellington, New Zealand, Museum of Natural History, Collections, Invalidenstrasse 43, 10115 Berlin, Germany, GNS Science, PO Box 30368, Lower Hutt, New Zealand, Department of Geosciences, and ANDRILL Science Management Office, 214 Bessey Hall, University of Nebraska–Lincoln, Lincoln, Nebraska 68588-0340, USA, Istituto Nazionale di Geofisica e Vulcanologia, Sezione Roma2, Roma, Italia, http://andrill.org/projects/sms/team.html
Format: Article in Journal/Newspaper
Language:English
Published: Geological Society of America 2009
Subjects:
Online Access:http://hdl.handle.net/2122/5231
https://doi.org/10.1130/G30139A.1
id ftingv:oai:www.earth-prints.org:2122/5231
record_format openpolar
institution Open Polar
collection Earth-Prints (Istituto Nazionale di Geofisica e Vulcanologia)
op_collection_id ftingv
language English
topic Middle Miocene Climatic Optimum
ANDRILL
Antarctica
Palynomorphs
04. Solid Earth::04.04. Geology::04.04.08. Sediments: dating
processes
transport
04. Solid Earth::04.04. Geology::04.04.10. Stratigraphy
spellingShingle Middle Miocene Climatic Optimum
ANDRILL
Antarctica
Palynomorphs
04. Solid Earth::04.04. Geology::04.04.08. Sediments: dating
processes
transport
04. Solid Earth::04.04. Geology::04.04.10. Stratigraphy
Warny, S.
Askin, R. A.
Hannah, M. J.
Mohr, B. A. R.
Raine, J. I.
Harwood, D. M.
Florindo, F.
SMS Science Team
Palynomorphs from a sediment core reveal a sudden remarkably warm Antarctica during the middle Miocene
topic_facet Middle Miocene Climatic Optimum
ANDRILL
Antarctica
Palynomorphs
04. Solid Earth::04.04. Geology::04.04.08. Sediments: dating
processes
transport
04. Solid Earth::04.04. Geology::04.04.10. Stratigraphy
description An exceptional triple palynological signal (unusually high abundance of marine, freshwater, and terrestrial palynomorphs) recovered from a core collected during the 2007 ANDRILL (Antarctic geologic drilling program) campaign in the Ross Sea, Antarctica, provides constraints for the Middle Miocene Climatic Optimum. Compared to elsewhere in the core, this signal comprises a 2000-fold increase in two species of dinoflagellate cysts, a synchronous fivefold increase in freshwater algae, and up to an 80-fold increase in terrestrial pollen, including a proliferation of woody plants. Together, these shifts in the palynological assemblages ca. 15.7 Ma ago represent a relatively short period of time during which Antarctica became abruptly much warmer. Land temperatures reached 10 °C (January mean), estimated annual sea-surface temperatures ranged from 0 to 11.5 °C, and increased freshwater input lowered the salinity during a short period of sea-ice reduction. Published 955-958 1.8. Osservazioni di geofisica ambientale 2.2. Laboratorio di paleomagnetismo JCR Journal reserved
author2 Warny, S.; Department of Geology and Geophysics, and Museum of Natural Science, E235 Howe-Russell, Louisiana State University, Baton Rouge, Louisiana 70803, USA
Askin, R. A.; Department of Geology and Geophysics, and Museum of Natural Science, E235 Howe-Russell, Louisiana State University, Baton Rouge, Louisiana 70803, USA
Hannah, M. J.; School of Geography, Environment and Earth Sciences, Antarctic Research Centre, Victoria University of Wellington, PO Box 600, Wellington, New Zealand
Mohr, B. A. R.; Museum of Natural History, Collections, Invalidenstrasse 43, 10115 Berlin, Germany
Raine, J. I.; GNS Science, PO Box 30368, Lower Hutt, New Zealand
Harwood, D. M.; Department of Geosciences, and ANDRILL Science Management Office, 214 Bessey Hall, University of Nebraska–Lincoln, Lincoln, Nebraska 68588-0340, USA
Florindo, F.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Roma2, Roma, Italia
SMS Science Team; http://andrill.org/projects/sms/team.html
Department of Geology and Geophysics, and Museum of Natural Science, E235 Howe-Russell, Louisiana State University, Baton Rouge, Louisiana 70803, USA
School of Geography, Environment and Earth Sciences, Antarctic Research Centre, Victoria University of Wellington, PO Box 600, Wellington, New Zealand
Museum of Natural History, Collections, Invalidenstrasse 43, 10115 Berlin, Germany
GNS Science, PO Box 30368, Lower Hutt, New Zealand
Department of Geosciences, and ANDRILL Science Management Office, 214 Bessey Hall, University of Nebraska–Lincoln, Lincoln, Nebraska 68588-0340, USA
Istituto Nazionale di Geofisica e Vulcanologia, Sezione Roma2, Roma, Italia
http://andrill.org/projects/sms/team.html
format Article in Journal/Newspaper
author Warny, S.
Askin, R. A.
Hannah, M. J.
Mohr, B. A. R.
Raine, J. I.
Harwood, D. M.
Florindo, F.
SMS Science Team
author_facet Warny, S.
Askin, R. A.
Hannah, M. J.
Mohr, B. A. R.
Raine, J. I.
Harwood, D. M.
Florindo, F.
SMS Science Team
author_sort Warny, S.
title Palynomorphs from a sediment core reveal a sudden remarkably warm Antarctica during the middle Miocene
title_short Palynomorphs from a sediment core reveal a sudden remarkably warm Antarctica during the middle Miocene
title_full Palynomorphs from a sediment core reveal a sudden remarkably warm Antarctica during the middle Miocene
title_fullStr Palynomorphs from a sediment core reveal a sudden remarkably warm Antarctica during the middle Miocene
title_full_unstemmed Palynomorphs from a sediment core reveal a sudden remarkably warm Antarctica during the middle Miocene
title_sort palynomorphs from a sediment core reveal a sudden remarkably warm antarctica during the middle miocene
publisher Geological Society of America
publishDate 2009
url http://hdl.handle.net/2122/5231
https://doi.org/10.1130/G30139A.1
geographic Antarctic
Ross Sea
geographic_facet Antarctic
Ross Sea
genre Antarc*
Antarctic
Antarctica
Ross Sea
Sea ice
genre_facet Antarc*
Antarctic
Antarctica
Ross Sea
Sea ice
op_relation Geology
10 / 37 (2009)
Acton, G., and 21 others, 2009, Preliminary integrated chronostratigraphy of the Site AND- 2–2A, ANDRILL Southern McMurdo Sound Project, Antarctica, in Harwood, D.M., et al., eds., Studies from the ANDRILL Southern McMurdo Sound Project, Antarctica: Terra Antartica (in press). Ashworth, A.C., Lewis, A.R., Marchant, D.R., Askin, R.A., Cantrill, D.J., Francis, J.E., Leng, M.J., Newton, A.E., Raine, J.I., Williams, M., and Wolfe, A.P., 2007, The Neogene biota of the Transantarctic Mountains, in Cooper, A.K., et al., eds., Online proceedings of the ISAES X: U.S. Geological Survey Open-File Report 2007–1047, extended abstract 071, 4 p. Askin, R.A., and Markgraf, V., 1986, Palynomorphs from the Sirius Formation, Dominion Range, Antarctica: Antarctic Journal of the United States, v. 21, p. 34–35. Askin, R.A., and Raine, J.I., 2000, Oligocene and early Miocene terrestrial palynology of Cape Roberts Drillhole CRP-2/2A, Victoria Land Basin, Antarctica: Terra Antartica, v. 7, p. 493–501. Batten, D.J., 1996, Colonial Chlorococcales, in Jansonius, J., and McGregor, D.C., eds., Palynology: Principles and applications, Volume 1: College Station, Texas, American Association of Stratigraphic Palynologists Foundation, p. 191–203. Brown, C.A., 2008, Palynological techniques: College Station, Texas, American Association of Stratigraphic Palynologists Foundation, 146 p. Dale, B., 1996, Dinoflagellate cysts ecology: modeling and geological applications, in Jansonius, J., and McGregor, D.C., eds., Palynology: Principles and applications, Volume 3: College Station, Texas, American Association of Stratigraphic Palynologists Foundation, p. 1249–1275. de Schepper, S., Head, M.J., and Louwye, S., 2004, New dinoflagellate cyst and incertae sedis taxa from the Pliocene of northern Belgium, southern North Sea Basin: Journal of Paleontology, v. 78, p. 625–644, doi:10.1666/0022-3360(2004)078<0625:NDCAIS >2.0.CO;2. de Vernal, A., and Hillaire-Marcel, C., 2008, Natural variability of Greenland climate, vegetation, and ice volume during the past million years: Science, v. 320, p. 1622–1625, doi:10.1126/ science.1153929. Edwards, L.E., and Andrle, A.S., 1992, Distribution of selected dinoflagellate cysts in modern marine sediments, in Head, M.J., and Wrenn, J.H., eds., Neogene and Quaternary dinoflagellate cysts and acritarchs: College Station, Texas, American Association of Stratigraphic Palynologists Foundation, p. 259–288. Florindo, F., Harwood, D.M., Levy, R.H., and SMS Project Science Team, 2008, ANDRILL success during the 4th International Polar Year: Scientific Drilling, v. 6, p. 29–31. Hannah, M.J., Wrenn, J.H., and Wilson, G., 1998, Early Miocene and Quaternary marine palynomorphs from Cape Roberts CRP 1, Mc- Murdo Sound, Antarctica: Terra Antartica, v. 5, p. 527–538. Hannah, M.J., Wilson, G., and Wrenn, J.H., 2000, Oligocene and Miocene marine palynomorphs from CRP-2/2A drillhole, Victoria Land Basin, Antarctica: Terra Antartica, v. 7, p. 503–511. Harland, R., and Pudsey, C.J., 1999, Dinoflagellate cysts from sediment traps deployed in the Bellingshausen, Weddell and Scotia seas, Antarctica: Marine Micropaleontology, v. 37, no. 2, p. 77–99. Harland, R., Pudsey, C.J., Howe, J.A., and Fitzpatrick, M.E.J., 1998, Recent dinoflagellate cysts in a transect from the Falklands Trough to the Weddell Sea, Antarctica: Palaeontology, v. 41, p. 1093–1131. Harwood, D.M., Florindo, F., Talarico, F., Levy, R.H., Kuhn, G., Naish, T., Niessen, F., Powell, R., Pyne, A., and Wilson, G., 2009, Antarctic drilling recovers stratigraphic records from the continental margin: Eos (Transactions, American Geophysical Union), v. 90, no. 11, p. 90– 91, doi:10.1029/2009EO110002. Kennett, J.P., and Stott, L.D., 1991, Abrupt deep-sea warming, palaeoceanographic changes and benthic extinctions at the end of the Palaeocene: Nature, v. 353, p. 225–229, doi:10.1038/ 353225a0. Lear, C.H., Elderfield, H., and Wilson, P.A., 2000, Cenozoic deep-sea temperatures and global ice volumes from Mg/Ca in benthic foraminiferal calcite: Science, v. 287, p. 269–272, doi:10.1126/science.287.5451.269. Lewis, A.R., Marchant, D.R., Kowalewski, D.E., Baldwin, S.L., and Webb, L.E., 2006, The age and origin of the Labyrinth, western Dry Valleys, Antarctica: Evidence for extensive middle Miocene subglacial floods and freshwater discharge to the Southern Ocean: Geology, v. 34, p. 513–516, doi:10.1130/G22145.1. Lewis, A.R., Marchant, D.R., Ashworth, A.C., Hemming, S.R., and Machlus, M.L., 2007, Major middle Miocene global climate change: Evidence from East Antarctica and the Transantarctic Mountains: Geological Society of America Bulletin, v. 119, p. 1449–1461, doi:10.1130/ 0016-7606(2007)119[1449:MMMGCC]2.0 .CO;2. Louwye, S., Head, M.J., and de Schepper, S., 2004, Dinoflagellate cyst stratigraphy and palaeoecology of the Pliocene in northern Belgium, southern North Sea Basin: Geological Magazine, v. 141, p. 353–378, doi:10.1017/S0016756804009136. Marret, F., and de Vernal, A., 1997, Dinoflagellate cyst distribution in surface sediments of the southern Indian Ocean: Marine Micropaleontology, v. 29, p. 367–392. Marret, F., and Zonneveld, K.A.F., 2003, Atlas of modern organic-walled dinoflagellate cyst distribution: Review of Palaeobotany and Palynology, v. 125, p. 1–200. Mildenhall, D.C., 1989, Terrestrial palynology, in Barrett, P.J., ed., Antarctic Cenozoic history from the CIROS-1 drillhole, McMurdo Sound: DSIR Bulletin, v. 245, p. 119–127. Prebble, J.G., Raine, J.I., Barrett, P.J., and Hannah, M.J., 2006, Vegetation and climate from two Oligocene glacioeustatic sedimentary cycles (31 and 24 Ma) cored by the Cape Roberts Project, Victoria Land Basin, Antarctica: Palaeogeography, Palaeoclimatology, Palaeoecology, v. 231, p. 41–57, doi:10.1016/j.palaeo .2005.07.025. Raine, J.I., 1998, Terrestrial palynomorphs from Cape Roberts Project drillhole CRP-1, Ross Sea, Antarctica: Terra Antartica, v. 5, p. 539–548. Raine, J.I., and Askin, R.A., 2001, Terrestrial palynology: Age and paleoenvironmental results from CRP-3, Victoria Land Basin, Antarctica: Terra Antartica, v. 8, p. 389–400. Sluijs, A., Bowen, G.J., Brinkhuis, H., Lourens, L.J., and Thomas, E., 2007, The Palaeocene-Eocene thermal maximum super greenhouse: Biotic and geochemical signatures, age models and mechanisms of global change, in Williams, M., et al., eds., Deep time perspectives on climate change: Marrying the signal from computer models and biological proxies: Geological Society of London, Micropalaeontological Society Special Publication 347, p. 323–347. Steig, E.J., and Wolfe, A.P., 2008, Sprucing up Greenland: Science, v. 320, p. 1595–1596, doi:10.1126/science.1160004. Troedson, A.L., and Riding, J.B., 2002, Upper Oligocene to lowermost Miocene strata of King George Island, South Shetland Islands, Antarctica: Stratigraphy, facies analysis, and implications for the glacial history of the Antarctic Peninsula: Journal of Sedimentary Research, v. 72, p. 510–523, doi:10.1306/110601720510. van Geel, B., and Grenfell, H.R., 1996, Spores of Zygnemataceae, in Jansonius, J., and Mc- Gregor, D.C. , eds., Palynology: principles and applications, Volume 1: College Station, Texas, American Association of Stratigraphic Palynologists Foundation, p. 173–179. Warny, S., Bart, P.J., and Suc, J.-P., 2003, Timing and progression of climatic, tectonic and glacioeustatic influences on the Messinian Salinity Crisis: Palaeogeography, Palaeoclimatology, Palaeoecology, v. 202, p. 59–66, doi:10.1016/ S0031-0182(03)00615-1. Warny, S., Wrenn, J.H., Bart, P.J., and Askin, R., 2006, Palynology of the NBP03–01A transect in the Northern Basin, western Ross Sea, Antarctica: A late Pliocene record: Palynology, v. 30, p. 151–182, doi:10.2113/ gspalynol.30.1.151. Wrenn, J.H., Hannah, M.J., and Raine, J.I., 1998, Diversity and palaeoenvironmental significance of late Cainozoic marine palynomorphs from the CRP-1 Core Ross Sea, Antarctica: Terra Antartica, v. 5, p. 553–570. Zachos, J.C., Pagani, M., Sloan, L., Thomas, E., and Billups, K., 2001, Trends, rhythms, and aberrations in global climate 65 Ma to present: Science, v. 292, p. 686–693, doi:10.1126/ science.1059412.
http://hdl.handle.net/2122/5231
doi:10.1130/G30139A.1
op_rights restricted
op_doi https://doi.org/10.1130/G30139A.1
https://doi.org/10.1666/0022-3360(2004)078<0625:NDCAIS
container_title Geology
container_volume 37
container_issue 10
container_start_page 955
op_container_end_page 958
_version_ 1766255676189835264
spelling ftingv:oai:www.earth-prints.org:2122/5231 2023-05-15T13:51:40+02:00 Palynomorphs from a sediment core reveal a sudden remarkably warm Antarctica during the middle Miocene Warny, S. Askin, R. A. Hannah, M. J. Mohr, B. A. R. Raine, J. I. Harwood, D. M. Florindo, F. SMS Science Team Warny, S.; Department of Geology and Geophysics, and Museum of Natural Science, E235 Howe-Russell, Louisiana State University, Baton Rouge, Louisiana 70803, USA Askin, R. A.; Department of Geology and Geophysics, and Museum of Natural Science, E235 Howe-Russell, Louisiana State University, Baton Rouge, Louisiana 70803, USA Hannah, M. J.; School of Geography, Environment and Earth Sciences, Antarctic Research Centre, Victoria University of Wellington, PO Box 600, Wellington, New Zealand Mohr, B. A. R.; Museum of Natural History, Collections, Invalidenstrasse 43, 10115 Berlin, Germany Raine, J. I.; GNS Science, PO Box 30368, Lower Hutt, New Zealand Harwood, D. M.; Department of Geosciences, and ANDRILL Science Management Office, 214 Bessey Hall, University of Nebraska–Lincoln, Lincoln, Nebraska 68588-0340, USA Florindo, F.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Roma2, Roma, Italia SMS Science Team; http://andrill.org/projects/sms/team.html Department of Geology and Geophysics, and Museum of Natural Science, E235 Howe-Russell, Louisiana State University, Baton Rouge, Louisiana 70803, USA School of Geography, Environment and Earth Sciences, Antarctic Research Centre, Victoria University of Wellington, PO Box 600, Wellington, New Zealand Museum of Natural History, Collections, Invalidenstrasse 43, 10115 Berlin, Germany GNS Science, PO Box 30368, Lower Hutt, New Zealand Department of Geosciences, and ANDRILL Science Management Office, 214 Bessey Hall, University of Nebraska–Lincoln, Lincoln, Nebraska 68588-0340, USA Istituto Nazionale di Geofisica e Vulcanologia, Sezione Roma2, Roma, Italia http://andrill.org/projects/sms/team.html 2009-10 http://hdl.handle.net/2122/5231 https://doi.org/10.1130/G30139A.1 en eng Geological Society of America Geology 10 / 37 (2009) Acton, G., and 21 others, 2009, Preliminary integrated chronostratigraphy of the Site AND- 2–2A, ANDRILL Southern McMurdo Sound Project, Antarctica, in Harwood, D.M., et al., eds., Studies from the ANDRILL Southern McMurdo Sound Project, Antarctica: Terra Antartica (in press). Ashworth, A.C., Lewis, A.R., Marchant, D.R., Askin, R.A., Cantrill, D.J., Francis, J.E., Leng, M.J., Newton, A.E., Raine, J.I., Williams, M., and Wolfe, A.P., 2007, The Neogene biota of the Transantarctic Mountains, in Cooper, A.K., et al., eds., Online proceedings of the ISAES X: U.S. Geological Survey Open-File Report 2007–1047, extended abstract 071, 4 p. Askin, R.A., and Markgraf, V., 1986, Palynomorphs from the Sirius Formation, Dominion Range, Antarctica: Antarctic Journal of the United States, v. 21, p. 34–35. Askin, R.A., and Raine, J.I., 2000, Oligocene and early Miocene terrestrial palynology of Cape Roberts Drillhole CRP-2/2A, Victoria Land Basin, Antarctica: Terra Antartica, v. 7, p. 493–501. Batten, D.J., 1996, Colonial Chlorococcales, in Jansonius, J., and McGregor, D.C., eds., Palynology: Principles and applications, Volume 1: College Station, Texas, American Association of Stratigraphic Palynologists Foundation, p. 191–203. Brown, C.A., 2008, Palynological techniques: College Station, Texas, American Association of Stratigraphic Palynologists Foundation, 146 p. Dale, B., 1996, Dinoflagellate cysts ecology: modeling and geological applications, in Jansonius, J., and McGregor, D.C., eds., Palynology: Principles and applications, Volume 3: College Station, Texas, American Association of Stratigraphic Palynologists Foundation, p. 1249–1275. de Schepper, S., Head, M.J., and Louwye, S., 2004, New dinoflagellate cyst and incertae sedis taxa from the Pliocene of northern Belgium, southern North Sea Basin: Journal of Paleontology, v. 78, p. 625–644, doi:10.1666/0022-3360(2004)078<0625:NDCAIS >2.0.CO;2. de Vernal, A., and Hillaire-Marcel, C., 2008, Natural variability of Greenland climate, vegetation, and ice volume during the past million years: Science, v. 320, p. 1622–1625, doi:10.1126/ science.1153929. Edwards, L.E., and Andrle, A.S., 1992, Distribution of selected dinoflagellate cysts in modern marine sediments, in Head, M.J., and Wrenn, J.H., eds., Neogene and Quaternary dinoflagellate cysts and acritarchs: College Station, Texas, American Association of Stratigraphic Palynologists Foundation, p. 259–288. Florindo, F., Harwood, D.M., Levy, R.H., and SMS Project Science Team, 2008, ANDRILL success during the 4th International Polar Year: Scientific Drilling, v. 6, p. 29–31. Hannah, M.J., Wrenn, J.H., and Wilson, G., 1998, Early Miocene and Quaternary marine palynomorphs from Cape Roberts CRP 1, Mc- Murdo Sound, Antarctica: Terra Antartica, v. 5, p. 527–538. Hannah, M.J., Wilson, G., and Wrenn, J.H., 2000, Oligocene and Miocene marine palynomorphs from CRP-2/2A drillhole, Victoria Land Basin, Antarctica: Terra Antartica, v. 7, p. 503–511. Harland, R., and Pudsey, C.J., 1999, Dinoflagellate cysts from sediment traps deployed in the Bellingshausen, Weddell and Scotia seas, Antarctica: Marine Micropaleontology, v. 37, no. 2, p. 77–99. Harland, R., Pudsey, C.J., Howe, J.A., and Fitzpatrick, M.E.J., 1998, Recent dinoflagellate cysts in a transect from the Falklands Trough to the Weddell Sea, Antarctica: Palaeontology, v. 41, p. 1093–1131. Harwood, D.M., Florindo, F., Talarico, F., Levy, R.H., Kuhn, G., Naish, T., Niessen, F., Powell, R., Pyne, A., and Wilson, G., 2009, Antarctic drilling recovers stratigraphic records from the continental margin: Eos (Transactions, American Geophysical Union), v. 90, no. 11, p. 90– 91, doi:10.1029/2009EO110002. Kennett, J.P., and Stott, L.D., 1991, Abrupt deep-sea warming, palaeoceanographic changes and benthic extinctions at the end of the Palaeocene: Nature, v. 353, p. 225–229, doi:10.1038/ 353225a0. Lear, C.H., Elderfield, H., and Wilson, P.A., 2000, Cenozoic deep-sea temperatures and global ice volumes from Mg/Ca in benthic foraminiferal calcite: Science, v. 287, p. 269–272, doi:10.1126/science.287.5451.269. Lewis, A.R., Marchant, D.R., Kowalewski, D.E., Baldwin, S.L., and Webb, L.E., 2006, The age and origin of the Labyrinth, western Dry Valleys, Antarctica: Evidence for extensive middle Miocene subglacial floods and freshwater discharge to the Southern Ocean: Geology, v. 34, p. 513–516, doi:10.1130/G22145.1. Lewis, A.R., Marchant, D.R., Ashworth, A.C., Hemming, S.R., and Machlus, M.L., 2007, Major middle Miocene global climate change: Evidence from East Antarctica and the Transantarctic Mountains: Geological Society of America Bulletin, v. 119, p. 1449–1461, doi:10.1130/ 0016-7606(2007)119[1449:MMMGCC]2.0 .CO;2. Louwye, S., Head, M.J., and de Schepper, S., 2004, Dinoflagellate cyst stratigraphy and palaeoecology of the Pliocene in northern Belgium, southern North Sea Basin: Geological Magazine, v. 141, p. 353–378, doi:10.1017/S0016756804009136. Marret, F., and de Vernal, A., 1997, Dinoflagellate cyst distribution in surface sediments of the southern Indian Ocean: Marine Micropaleontology, v. 29, p. 367–392. Marret, F., and Zonneveld, K.A.F., 2003, Atlas of modern organic-walled dinoflagellate cyst distribution: Review of Palaeobotany and Palynology, v. 125, p. 1–200. Mildenhall, D.C., 1989, Terrestrial palynology, in Barrett, P.J., ed., Antarctic Cenozoic history from the CIROS-1 drillhole, McMurdo Sound: DSIR Bulletin, v. 245, p. 119–127. Prebble, J.G., Raine, J.I., Barrett, P.J., and Hannah, M.J., 2006, Vegetation and climate from two Oligocene glacioeustatic sedimentary cycles (31 and 24 Ma) cored by the Cape Roberts Project, Victoria Land Basin, Antarctica: Palaeogeography, Palaeoclimatology, Palaeoecology, v. 231, p. 41–57, doi:10.1016/j.palaeo .2005.07.025. Raine, J.I., 1998, Terrestrial palynomorphs from Cape Roberts Project drillhole CRP-1, Ross Sea, Antarctica: Terra Antartica, v. 5, p. 539–548. Raine, J.I., and Askin, R.A., 2001, Terrestrial palynology: Age and paleoenvironmental results from CRP-3, Victoria Land Basin, Antarctica: Terra Antartica, v. 8, p. 389–400. Sluijs, A., Bowen, G.J., Brinkhuis, H., Lourens, L.J., and Thomas, E., 2007, The Palaeocene-Eocene thermal maximum super greenhouse: Biotic and geochemical signatures, age models and mechanisms of global change, in Williams, M., et al., eds., Deep time perspectives on climate change: Marrying the signal from computer models and biological proxies: Geological Society of London, Micropalaeontological Society Special Publication 347, p. 323–347. Steig, E.J., and Wolfe, A.P., 2008, Sprucing up Greenland: Science, v. 320, p. 1595–1596, doi:10.1126/science.1160004. Troedson, A.L., and Riding, J.B., 2002, Upper Oligocene to lowermost Miocene strata of King George Island, South Shetland Islands, Antarctica: Stratigraphy, facies analysis, and implications for the glacial history of the Antarctic Peninsula: Journal of Sedimentary Research, v. 72, p. 510–523, doi:10.1306/110601720510. van Geel, B., and Grenfell, H.R., 1996, Spores of Zygnemataceae, in Jansonius, J., and Mc- Gregor, D.C. , eds., Palynology: principles and applications, Volume 1: College Station, Texas, American Association of Stratigraphic Palynologists Foundation, p. 173–179. Warny, S., Bart, P.J., and Suc, J.-P., 2003, Timing and progression of climatic, tectonic and glacioeustatic influences on the Messinian Salinity Crisis: Palaeogeography, Palaeoclimatology, Palaeoecology, v. 202, p. 59–66, doi:10.1016/ S0031-0182(03)00615-1. Warny, S., Wrenn, J.H., Bart, P.J., and Askin, R., 2006, Palynology of the NBP03–01A transect in the Northern Basin, western Ross Sea, Antarctica: A late Pliocene record: Palynology, v. 30, p. 151–182, doi:10.2113/ gspalynol.30.1.151. Wrenn, J.H., Hannah, M.J., and Raine, J.I., 1998, Diversity and palaeoenvironmental significance of late Cainozoic marine palynomorphs from the CRP-1 Core Ross Sea, Antarctica: Terra Antartica, v. 5, p. 553–570. Zachos, J.C., Pagani, M., Sloan, L., Thomas, E., and Billups, K., 2001, Trends, rhythms, and aberrations in global climate 65 Ma to present: Science, v. 292, p. 686–693, doi:10.1126/ science.1059412. http://hdl.handle.net/2122/5231 doi:10.1130/G30139A.1 restricted Middle Miocene Climatic Optimum ANDRILL Antarctica Palynomorphs 04. Solid Earth::04.04. Geology::04.04.08. Sediments: dating processes transport 04. Solid Earth::04.04. Geology::04.04.10. Stratigraphy article 2009 ftingv https://doi.org/10.1130/G30139A.1 https://doi.org/10.1666/0022-3360(2004)078<0625:NDCAIS 2022-07-29T06:05:21Z An exceptional triple palynological signal (unusually high abundance of marine, freshwater, and terrestrial palynomorphs) recovered from a core collected during the 2007 ANDRILL (Antarctic geologic drilling program) campaign in the Ross Sea, Antarctica, provides constraints for the Middle Miocene Climatic Optimum. Compared to elsewhere in the core, this signal comprises a 2000-fold increase in two species of dinoflagellate cysts, a synchronous fivefold increase in freshwater algae, and up to an 80-fold increase in terrestrial pollen, including a proliferation of woody plants. Together, these shifts in the palynological assemblages ca. 15.7 Ma ago represent a relatively short period of time during which Antarctica became abruptly much warmer. Land temperatures reached 10 °C (January mean), estimated annual sea-surface temperatures ranged from 0 to 11.5 °C, and increased freshwater input lowered the salinity during a short period of sea-ice reduction. Published 955-958 1.8. Osservazioni di geofisica ambientale 2.2. Laboratorio di paleomagnetismo JCR Journal reserved Article in Journal/Newspaper Antarc* Antarctic Antarctica Ross Sea Sea ice Earth-Prints (Istituto Nazionale di Geofisica e Vulcanologia) Antarctic Ross Sea Geology 37 10 955 958