The GRACE-satellite gravity and geoid fields in analysing large-scale

The recently released gravity potential field development derived from the Gravity Recovery and Climate Experiment satellite allows an unprecedented opportunity to use the gravity field to make global comparisons of structures of geological interest. The spatial resolution of the gravity field is su...

Full description

Bibliographic Details
Published in:Geophysical Prospecting
Main Authors: Braitenberg, Carla, Ebbing, Jörg
Format: Article in Journal/Newspaper
Language:English
Published: Blackwell 2009
Subjects:
LIP
Online Access:http://hdl.handle.net/2122/4997
http://www2.units.it/~geodin/bib/GProsp09.pdf
https://doi.org/10.1111/j.1365-2478.2009.00793.x
id ftingv:oai:www.earth-prints.org:2122/4997
record_format openpolar
institution Open Polar
collection Earth-Prints (Istituto Nazionale di Geofisica e Vulcanologia)
op_collection_id ftingv
language English
topic GRACE
Basins
gravity
isostasy
Cratonic basin
Congo Basin
Tarim Basin
Amazon Basin
East Barents Sea Basin
Parana' basin
Oil maturation
LIP
Basaltic province
04. Solid Earth::04.02. Exploration geophysics::04.02.99. General or miscellaneous
spellingShingle GRACE
Basins
gravity
isostasy
Cratonic basin
Congo Basin
Tarim Basin
Amazon Basin
East Barents Sea Basin
Parana' basin
Oil maturation
LIP
Basaltic province
04. Solid Earth::04.02. Exploration geophysics::04.02.99. General or miscellaneous
Braitenberg, Carla
Ebbing, Jörg
The GRACE-satellite gravity and geoid fields in analysing large-scale
topic_facet GRACE
Basins
gravity
isostasy
Cratonic basin
Congo Basin
Tarim Basin
Amazon Basin
East Barents Sea Basin
Parana' basin
Oil maturation
LIP
Basaltic province
04. Solid Earth::04.02. Exploration geophysics::04.02.99. General or miscellaneous
description The recently released gravity potential field development derived from the Gravity Recovery and Climate Experiment satellite allows an unprecedented opportunity to use the gravity field to make global comparisons of structures of geological interest. The spatial resolution of the gravity field is sufficiently good to map large-scale or intracratonic and cratonic basins, as the areal extent of these basins is 0.5 × 106 km2 and greater. We present the gravity anomaly, Bouguer, geoid and terrain corrected geoid fields for a selection of nine large-scale basins and show that the satellite-derived field can be used to successfully identify distinctive structures of these basins, e.g., extinct rifts underlying the basins and generally the isostatic state. The studied basins are the Eastern Barents Sea, West Siberian, Tarim, Congo, Michigan, Amazon, Solim ˜ oes, Parnaiba and Paran`a basins. We complete the mapping of the gravity field with a description of the basins in terms of areal extension and depth, sedimentary age and presence and age of volcanism. Interpretation of the satellite gravity anomalies and considerations regarding the crustal thickness as known from seismic investigations, allows us to conclude that for the greater part of the basins there is evidence for high-density material in the lower crust and/or upper mantle. This density anomaly is, at least partly, compensating for the low-density sedimentary infill instead of the crustal thinning mechanism. For our selection of basins, crustal thickness variations and Moho topography cannot be considered as mechanisms of compensation of the sedimentary loading, which is a clear difference to well-defined rift basins. In press 13 JCR Journal reserved
author2 Braitenberg, Carla
Ebbing, Jörg
format Article in Journal/Newspaper
author Braitenberg, Carla
Ebbing, Jörg
author_facet Braitenberg, Carla
Ebbing, Jörg
author_sort Braitenberg, Carla
title The GRACE-satellite gravity and geoid fields in analysing large-scale
title_short The GRACE-satellite gravity and geoid fields in analysing large-scale
title_full The GRACE-satellite gravity and geoid fields in analysing large-scale
title_fullStr The GRACE-satellite gravity and geoid fields in analysing large-scale
title_full_unstemmed The GRACE-satellite gravity and geoid fields in analysing large-scale
title_sort grace-satellite gravity and geoid fields in analysing large-scale
publisher Blackwell
publishDate 2009
url http://hdl.handle.net/2122/4997
http://www2.units.it/~geodin/bib/GProsp09.pdf
https://doi.org/10.1111/j.1365-2478.2009.00793.x
geographic Barents Sea
geographic_facet Barents Sea
genre Barents Sea
genre_facet Barents Sea
op_relation Geophysical Prospecting
2009
Allen M.B., Anderson L., Searle R.C. and Buslov M. 2006. Oblique rift geometry of the West Siberian Basin: tectonic setting for the Siberian flod basalts. Journal of the Geological Society, London 163, 901-904. Allen P.A. and Allen J.R. 2005. Basin analysis: Principles and Applications, 2nd edition., 549p., Blackwell Publishing, Oxford, ISBN-13: 978-0-632-05207-3. Almeida F.F.M., Hasui Y., De Brito Neves B.B. and Fuck R.A. 1981. Brazilian structural provinces : An introduction. Earth Science Reviews 17, 1-29. Almeida F.F.M., De Brito Neves B.B. and Dal Rè Carneiro C. 2000. The origin and evolution of the South American Platform. Earth Science Reviews 50, 77-111. An M. and Assumpção M. 2006. Crustal and upper mantle structure in the intracratonic Parana’ basin, SE Brazil, from surface wave dispersion using genetic algorithms. J. S. Am. Earth Sc. 21, 173-184. Artyushkov E.V. 2005. The formation mechanism of the Barents Basin, Russ. Geol. Geophys. 46(7), 700–713. Assumpção M., James D.E. and Snoke J.A. 2002. Crustal thickness in SE Brazilian shield by receiver function analysis: implications for isostatic compensation. J. Geophys. Res. 107 (B1), 2006. 10.1029/2001JB000422. Braitenberg C., Wang Y., Fang J. and Hsu H.T. 2003. Spatial Variations of flexure parameters over the Tibet-Quinghai Plateau. Earth Planet. Sci. Lett. 205, 211-224. Braitenberg C. and Ebbing J. 2009. New insights into the basement structure of the West Siberian Basin from forward and inverse modelling of Grace satellite gravity data. J. Geophys. Res., submitted. Chen Z.Q. and Shi G.R. 2003. Late Paleozoic depositional history of the Tarim basin, northwest China: an integration of biostratigraphic and lithostratigraphic constraints. AAPG Bulletin, 87, 1323-1354. Daly M.C., Lawrence S.R. Kimuna D. and Binga M. 1991. Late Paleozoic deformation in central Africa: a result of a distant collision? Nature 350, 605. Daly M.C., Lawrence S.R., Diemu-Tshiband K. and B. Matouana 1992. Tectonic evolution of the Cuvette Centrale, Zaire. J. Geol. Soc. London 149, 539-546. Ebbing J., Braitenberg C. and Wienecke S. 2007. Insights into the lithospheric structure and the tectonic setting of the Barents Sea region from isostatic considerations. Geophysical Journal International 171 (3), 1390–1403. Feng M., Assumpção M. and Van Der Lee S. 2004. Group-velocity tomography and lithospheric s-velocity structure of the south american continent. Phys. Earth Planet. Int. 147 (4), 315–331. doi:10.1016/j.pepi.2004.07.008. Forsberg R. 1984. A Study of Terrain Reductions, Density Anomalies and Geophysical Inversion Methods in Gravity Field Modelling. Reports of the Department of Geodetic Science and Surveying, No. 355, The Ohio State University, Columbus, Ohio. Förste C., Schmidt R., Stubenvoll R., Flechtner F., Meyer U., König R., Neumayer H., Biancale R., Lemoine J.-M., Bruinsma S., Loyer S., Barthelmes F. and Esselborn S. 2008. The GeoForschungsZentrum Potsdam/Groupe de Recherche de Geodesie Spatiale satellite-only and combined gravity field models: EIGEN-GL04S1 and EIGEN-GL04C, Journal of Geodesy, doi:10.1007/s00190-007-0183-8. Guo Z.-J., Yin A., Robinson A. and Jia C.-Z. 2005. Geochronology and geochemistry of deep-drill-core samples from the basement of the central Tarim basin. J. of Asian Earth Sci. 25, 45–56. Hartley R.W. and Allen P.A. 1994. Interior cratonic basins of Africa: relation to continental break-up and role of mantle convection. Basin Res. 6, 95-113. Hartley R.W., Watts A.B. and Fairhead J.D. 1996. Isostasy of Africa. Earth Planet. Sci. Let., 137, 1-18. Haxby W.F., Turcotte D.L. and Bird J.M. 1976. Thermal and mechanical evolution of the Michigan Basin. Tectonophysics 36, 57-75. Jia D., Lu H., Cai D., Wu S., Shi Y. and Chen C. 1998. Structural features of northern Tarim basin: Implications for regional tectonics and petroleum traps. AAPG Bulletin 82, 1, 147-159. Leighton M.W. and Kolata D.R. 1990. Selected interior cratonic basins and their place in the scheme of global tectonics, Mem. Am. Ass. Petrol Geol. 51, 729-797. Levshin A.L., Schweitzer J., Weidle C., Shapiro N.M. and Ritzwoller M.H. 2007. Surface wave tomography of the Barents Sea and surrounding regions. Geophys. J. Int. 170, 441–459. Lithospheric Dynamic Atlas of China 1989. China Cartographic Publishing House, Beijing. McKenzie D. 1978. Some remarks on the development of sedimentary basins. Earth and Planetary Science Letters 40, 25-32. Milani E.J. 2004. Comentários sobre a origem e a evolução tectônica da bacia so Paraná. In: Geologia do continente Sud-Americano: evolução da obra de Fernando Flávio Marques Almeida, (edts. Mantesso-Neto V., Bartorelli A., Dal Ré Carneiro C., Bley de Brito-Neves B.), pp. 1-673. Beca Produções Culturais, São Paulo, Brasil. Milani E.J. and Thomaz Filho A. 2000. Sedimentary basins of South America. In: Tectonic evolution of South America (edts. Cordani U.G., Milani E.J., Thomaz Filho, A. and Campos D.A.), p.389-449. 31st International Geological Congress, Rio de Janeiro, Brasil. Milani E.J. and Ramos V.A. 1998. Orogenias paleozòicas no domìnio sul – ocidental do Gondwana e os ciclos de subsidència da Bacia do Paranà. Revista Brasileira de Geocièncias, 474-484. Molina E.C., Ussami N., Sà N.C., Blitzkow D. and Fo O.F.M. 1988. Deep Crustal Structure Under The Parana Basin (Brazil) From Gravity Study. In: The mesozoic flood volcanism of the Paranà basin: petrogenetic and geophysical aspects. (edts. E.M. Piccirillo and Adolpho José Melfi. IAG-University of Sao Paulo, 271-283. Nunn, J.A. 1994. Free thermal convection beneath intracratonic basins: thermal and subsidence effects. Basin Research 6, 115-130. Nunn J.A. and Aires J.R. 1988. Gravity anomalies and flexure of the lithosphere at the middle Amazon basin, Brazil. J. Geophys. Res. 93, 415-428. Nunn J.A. and Sleep N.H. 1984. Thermal contraction and flexure of intracratonal basins: a three-dimensional study of the Michigan basin. Geophys. J. R. Astr. Soc. 76, 587-635. O'Leary N., White N., Tull S. and Bashilov V. 2004. Evolution of the Timan–Pechora and South Barents Sea basins. Geol. Mag. 141 (2), 141–160. Pavlov Y.A 1995. On recognition of rift structures in the basement of the West Siberian plate. Geotectonics, English Translation (AGU) 29, no.3, 213-223. Perez-Gussinye M., Lowry A.R., Watts A.B. 2007. Effective elastic thickness of South America and its implications for intracontinental deformation, Geochemistry Geophysics Geosystems 8, Art. No. Q05009. Reichow M.K., Saunders A.D., White R.V., Al’Mukhamedov A.I., Medvedev A.Y. 2005. Geochemistry and petrogenesis of basalts from the West Siberian Basin: an extension of the Permo–Triassic Siberian Traps, Russia, Lithos, 79 425-452. Ritzmann O., Maercklin N., Faleide J.I., Bungum H., Mooney W.D. and Detweiler S.T., 2007. A three-dimensional geophysical model of the crust in the Barents Sea region: model construction and basement characterization. Geophys. J. Int. 170, 417–435. Sleep N.H. and Sloss L.L. 1978. A deep borehole in the Michigan Basin. J. Geophys. Res. 83, B12, 5815-5819. Sleep N.H. and Snell N.S. 1976. Thermal contraction and flexure of mid-continent and Atlantic marginal basins. Geophys. J. R. Astr. Soc. 45, 125-154. Sleep N.-H, Nunn J.-A. and Chou L. 1980. Platform basins. Annual Review of Earth and Planetary Sciences 8, 17-34. Sloss L.L. and Scherer W. 1975. Geometry of sedimentary basins: applications to the Devonian of North America and Europe, Geol. Soc. Am., Memoir 142, 71-88. Sobel E.R., Hilley G.E. and Strecker M.R. 2003. Formation of internally drained contractional basins by aridity-limited bedrock incision. J. Geophys. Res. 108, B7, 2344, doi:10.1029/2002JB001883, Tapley B.D., Bettadpur S., Ries J.C., Thompson P.F. and Watkins M.M. 2004. GRACE Measurements of Mass Variability in the Earth System, Science 305, 503, DOI:10.1126/science.1099192, Tscherning C.C., Forsberg R. and Knudsen P. 1992. The GRAVSOFT package for geoid determination. Proc. 1. Continental Workshop on the Geoid in Europe, Prague, May 1992, pp. 327-334, Prague. Vyssotski A.V., Vyssotski V.N. and Nezhdanov A.A. 2006. Evolution of the West Siberian Basin. Marine and Petroleum Geol. 23, 93-126. Watts A.B. 2001. Isostasy and flexure of the lithosphere, Cambridge University Press, Cambridge, 2001, 458 pp. ISBN-13: 9780521006002. Wessel P., and Smith W. H. F. 1998. New, Improved Version of Generic Mapping Tools Released, EOS Trans., AGU 79 (47), p. 579. Yuzhu K. and Zhihong K. 1996. Tectonic evolution and oil and gas of Tarim basin. Journal of Southeast Asian Earth Sciences 13, 3-5, 317-325. Zhu T. and Brown L.R. 1986. Consortium for continental reflection profiling Michigan Surveys: reprocessing and results. J. Geophys. Res., 91, 11477-11495.
http://hdl.handle.net/2122/4997
http://www2.units.it/~geodin/bib/GProsp09.pdf
doi:10.1111/j.1365-2478.2009.00793.x
op_rights restricted
op_doi https://doi.org/10.1111/j.1365-2478.2009.00793.x
https://doi.org/10.1029/2001JB000422.
container_title Geophysical Prospecting
container_volume 57
container_issue 4
container_start_page 559
op_container_end_page 571
_version_ 1766370135131553792
spelling ftingv:oai:www.earth-prints.org:2122/4997 2023-05-15T15:38:48+02:00 The GRACE-satellite gravity and geoid fields in analysing large-scale Braitenberg, Carla Ebbing, Jörg Braitenberg, Carla Ebbing, Jörg 2009 http://hdl.handle.net/2122/4997 http://www2.units.it/~geodin/bib/GProsp09.pdf https://doi.org/10.1111/j.1365-2478.2009.00793.x en eng Blackwell Geophysical Prospecting 2009 Allen M.B., Anderson L., Searle R.C. and Buslov M. 2006. Oblique rift geometry of the West Siberian Basin: tectonic setting for the Siberian flod basalts. Journal of the Geological Society, London 163, 901-904. Allen P.A. and Allen J.R. 2005. Basin analysis: Principles and Applications, 2nd edition., 549p., Blackwell Publishing, Oxford, ISBN-13: 978-0-632-05207-3. Almeida F.F.M., Hasui Y., De Brito Neves B.B. and Fuck R.A. 1981. Brazilian structural provinces : An introduction. Earth Science Reviews 17, 1-29. Almeida F.F.M., De Brito Neves B.B. and Dal Rè Carneiro C. 2000. The origin and evolution of the South American Platform. Earth Science Reviews 50, 77-111. An M. and Assumpção M. 2006. Crustal and upper mantle structure in the intracratonic Parana’ basin, SE Brazil, from surface wave dispersion using genetic algorithms. J. S. Am. Earth Sc. 21, 173-184. Artyushkov E.V. 2005. The formation mechanism of the Barents Basin, Russ. Geol. Geophys. 46(7), 700–713. Assumpção M., James D.E. and Snoke J.A. 2002. Crustal thickness in SE Brazilian shield by receiver function analysis: implications for isostatic compensation. J. Geophys. Res. 107 (B1), 2006. 10.1029/2001JB000422. Braitenberg C., Wang Y., Fang J. and Hsu H.T. 2003. Spatial Variations of flexure parameters over the Tibet-Quinghai Plateau. Earth Planet. Sci. Lett. 205, 211-224. Braitenberg C. and Ebbing J. 2009. New insights into the basement structure of the West Siberian Basin from forward and inverse modelling of Grace satellite gravity data. J. Geophys. Res., submitted. Chen Z.Q. and Shi G.R. 2003. Late Paleozoic depositional history of the Tarim basin, northwest China: an integration of biostratigraphic and lithostratigraphic constraints. AAPG Bulletin, 87, 1323-1354. Daly M.C., Lawrence S.R. Kimuna D. and Binga M. 1991. Late Paleozoic deformation in central Africa: a result of a distant collision? Nature 350, 605. Daly M.C., Lawrence S.R., Diemu-Tshiband K. and B. Matouana 1992. Tectonic evolution of the Cuvette Centrale, Zaire. J. Geol. Soc. London 149, 539-546. Ebbing J., Braitenberg C. and Wienecke S. 2007. Insights into the lithospheric structure and the tectonic setting of the Barents Sea region from isostatic considerations. Geophysical Journal International 171 (3), 1390–1403. Feng M., Assumpção M. and Van Der Lee S. 2004. Group-velocity tomography and lithospheric s-velocity structure of the south american continent. Phys. Earth Planet. Int. 147 (4), 315–331. doi:10.1016/j.pepi.2004.07.008. Forsberg R. 1984. A Study of Terrain Reductions, Density Anomalies and Geophysical Inversion Methods in Gravity Field Modelling. Reports of the Department of Geodetic Science and Surveying, No. 355, The Ohio State University, Columbus, Ohio. Förste C., Schmidt R., Stubenvoll R., Flechtner F., Meyer U., König R., Neumayer H., Biancale R., Lemoine J.-M., Bruinsma S., Loyer S., Barthelmes F. and Esselborn S. 2008. The GeoForschungsZentrum Potsdam/Groupe de Recherche de Geodesie Spatiale satellite-only and combined gravity field models: EIGEN-GL04S1 and EIGEN-GL04C, Journal of Geodesy, doi:10.1007/s00190-007-0183-8. Guo Z.-J., Yin A., Robinson A. and Jia C.-Z. 2005. Geochronology and geochemistry of deep-drill-core samples from the basement of the central Tarim basin. J. of Asian Earth Sci. 25, 45–56. Hartley R.W. and Allen P.A. 1994. Interior cratonic basins of Africa: relation to continental break-up and role of mantle convection. Basin Res. 6, 95-113. Hartley R.W., Watts A.B. and Fairhead J.D. 1996. Isostasy of Africa. Earth Planet. Sci. Let., 137, 1-18. Haxby W.F., Turcotte D.L. and Bird J.M. 1976. Thermal and mechanical evolution of the Michigan Basin. Tectonophysics 36, 57-75. Jia D., Lu H., Cai D., Wu S., Shi Y. and Chen C. 1998. Structural features of northern Tarim basin: Implications for regional tectonics and petroleum traps. AAPG Bulletin 82, 1, 147-159. Leighton M.W. and Kolata D.R. 1990. Selected interior cratonic basins and their place in the scheme of global tectonics, Mem. Am. Ass. Petrol Geol. 51, 729-797. Levshin A.L., Schweitzer J., Weidle C., Shapiro N.M. and Ritzwoller M.H. 2007. Surface wave tomography of the Barents Sea and surrounding regions. Geophys. J. Int. 170, 441–459. Lithospheric Dynamic Atlas of China 1989. China Cartographic Publishing House, Beijing. McKenzie D. 1978. Some remarks on the development of sedimentary basins. Earth and Planetary Science Letters 40, 25-32. Milani E.J. 2004. Comentários sobre a origem e a evolução tectônica da bacia so Paraná. In: Geologia do continente Sud-Americano: evolução da obra de Fernando Flávio Marques Almeida, (edts. Mantesso-Neto V., Bartorelli A., Dal Ré Carneiro C., Bley de Brito-Neves B.), pp. 1-673. Beca Produções Culturais, São Paulo, Brasil. Milani E.J. and Thomaz Filho A. 2000. Sedimentary basins of South America. In: Tectonic evolution of South America (edts. Cordani U.G., Milani E.J., Thomaz Filho, A. and Campos D.A.), p.389-449. 31st International Geological Congress, Rio de Janeiro, Brasil. Milani E.J. and Ramos V.A. 1998. Orogenias paleozòicas no domìnio sul – ocidental do Gondwana e os ciclos de subsidència da Bacia do Paranà. Revista Brasileira de Geocièncias, 474-484. Molina E.C., Ussami N., Sà N.C., Blitzkow D. and Fo O.F.M. 1988. Deep Crustal Structure Under The Parana Basin (Brazil) From Gravity Study. In: The mesozoic flood volcanism of the Paranà basin: petrogenetic and geophysical aspects. (edts. E.M. Piccirillo and Adolpho José Melfi. IAG-University of Sao Paulo, 271-283. Nunn, J.A. 1994. Free thermal convection beneath intracratonic basins: thermal and subsidence effects. Basin Research 6, 115-130. Nunn J.A. and Aires J.R. 1988. Gravity anomalies and flexure of the lithosphere at the middle Amazon basin, Brazil. J. Geophys. Res. 93, 415-428. Nunn J.A. and Sleep N.H. 1984. Thermal contraction and flexure of intracratonal basins: a three-dimensional study of the Michigan basin. Geophys. J. R. Astr. Soc. 76, 587-635. O'Leary N., White N., Tull S. and Bashilov V. 2004. Evolution of the Timan–Pechora and South Barents Sea basins. Geol. Mag. 141 (2), 141–160. Pavlov Y.A 1995. On recognition of rift structures in the basement of the West Siberian plate. Geotectonics, English Translation (AGU) 29, no.3, 213-223. Perez-Gussinye M., Lowry A.R., Watts A.B. 2007. Effective elastic thickness of South America and its implications for intracontinental deformation, Geochemistry Geophysics Geosystems 8, Art. No. Q05009. Reichow M.K., Saunders A.D., White R.V., Al’Mukhamedov A.I., Medvedev A.Y. 2005. Geochemistry and petrogenesis of basalts from the West Siberian Basin: an extension of the Permo–Triassic Siberian Traps, Russia, Lithos, 79 425-452. Ritzmann O., Maercklin N., Faleide J.I., Bungum H., Mooney W.D. and Detweiler S.T., 2007. A three-dimensional geophysical model of the crust in the Barents Sea region: model construction and basement characterization. Geophys. J. Int. 170, 417–435. Sleep N.H. and Sloss L.L. 1978. A deep borehole in the Michigan Basin. J. Geophys. Res. 83, B12, 5815-5819. Sleep N.H. and Snell N.S. 1976. Thermal contraction and flexure of mid-continent and Atlantic marginal basins. Geophys. J. R. Astr. Soc. 45, 125-154. Sleep N.-H, Nunn J.-A. and Chou L. 1980. Platform basins. Annual Review of Earth and Planetary Sciences 8, 17-34. Sloss L.L. and Scherer W. 1975. Geometry of sedimentary basins: applications to the Devonian of North America and Europe, Geol. Soc. Am., Memoir 142, 71-88. Sobel E.R., Hilley G.E. and Strecker M.R. 2003. Formation of internally drained contractional basins by aridity-limited bedrock incision. J. Geophys. Res. 108, B7, 2344, doi:10.1029/2002JB001883, Tapley B.D., Bettadpur S., Ries J.C., Thompson P.F. and Watkins M.M. 2004. GRACE Measurements of Mass Variability in the Earth System, Science 305, 503, DOI:10.1126/science.1099192, Tscherning C.C., Forsberg R. and Knudsen P. 1992. The GRAVSOFT package for geoid determination. Proc. 1. Continental Workshop on the Geoid in Europe, Prague, May 1992, pp. 327-334, Prague. Vyssotski A.V., Vyssotski V.N. and Nezhdanov A.A. 2006. Evolution of the West Siberian Basin. Marine and Petroleum Geol. 23, 93-126. Watts A.B. 2001. Isostasy and flexure of the lithosphere, Cambridge University Press, Cambridge, 2001, 458 pp. ISBN-13: 9780521006002. Wessel P., and Smith W. H. F. 1998. New, Improved Version of Generic Mapping Tools Released, EOS Trans., AGU 79 (47), p. 579. Yuzhu K. and Zhihong K. 1996. Tectonic evolution and oil and gas of Tarim basin. Journal of Southeast Asian Earth Sciences 13, 3-5, 317-325. Zhu T. and Brown L.R. 1986. Consortium for continental reflection profiling Michigan Surveys: reprocessing and results. J. Geophys. Res., 91, 11477-11495. http://hdl.handle.net/2122/4997 http://www2.units.it/~geodin/bib/GProsp09.pdf doi:10.1111/j.1365-2478.2009.00793.x restricted GRACE Basins gravity isostasy Cratonic basin Congo Basin Tarim Basin Amazon Basin East Barents Sea Basin Parana' basin Oil maturation LIP Basaltic province 04. Solid Earth::04.02. Exploration geophysics::04.02.99. General or miscellaneous article 2009 ftingv https://doi.org/10.1111/j.1365-2478.2009.00793.x https://doi.org/10.1029/2001JB000422. 2022-07-29T06:05:16Z The recently released gravity potential field development derived from the Gravity Recovery and Climate Experiment satellite allows an unprecedented opportunity to use the gravity field to make global comparisons of structures of geological interest. The spatial resolution of the gravity field is sufficiently good to map large-scale or intracratonic and cratonic basins, as the areal extent of these basins is 0.5 × 106 km2 and greater. We present the gravity anomaly, Bouguer, geoid and terrain corrected geoid fields for a selection of nine large-scale basins and show that the satellite-derived field can be used to successfully identify distinctive structures of these basins, e.g., extinct rifts underlying the basins and generally the isostatic state. The studied basins are the Eastern Barents Sea, West Siberian, Tarim, Congo, Michigan, Amazon, Solim ˜ oes, Parnaiba and Paran`a basins. We complete the mapping of the gravity field with a description of the basins in terms of areal extension and depth, sedimentary age and presence and age of volcanism. Interpretation of the satellite gravity anomalies and considerations regarding the crustal thickness as known from seismic investigations, allows us to conclude that for the greater part of the basins there is evidence for high-density material in the lower crust and/or upper mantle. This density anomaly is, at least partly, compensating for the low-density sedimentary infill instead of the crustal thinning mechanism. For our selection of basins, crustal thickness variations and Moho topography cannot be considered as mechanisms of compensation of the sedimentary loading, which is a clear difference to well-defined rift basins. In press 13 JCR Journal reserved Article in Journal/Newspaper Barents Sea Earth-Prints (Istituto Nazionale di Geofisica e Vulcanologia) Barents Sea Geophysical Prospecting 57 4 559 571