NAO–ocean circulation interactions in a coupled general circulation model

The interplay between the North Atlantic Oscillation and the large scale ocean circulation is inspected in a 20th century simulation conducted with a state-of-the-art coupled general circulation model. Significant lead-lag covariance between oceanic and tropospheric variables suggests that the syste...

Full description

Bibliographic Details
Published in:Climate Dynamics
Main Authors: Bellucci, A., Gualdi, S., Scoccimarro, E., Navarra, A.
Other Authors: Bellucci, A.; CMCC, Gualdi, S.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Bologna, Bologna, Italia, Scoccimarro, E.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Bologna, Bologna, Italia, Navarra, A.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Bologna, Bologna, Italia, CMCC, Istituto Nazionale di Geofisica e Vulcanologia, Sezione Bologna, Bologna, Italia
Format: Article in Journal/Newspaper
Language:English
Published: SPRINGER 2008
Subjects:
NAO
Online Access:http://hdl.handle.net/2122/4588
https://doi.org/10.1007/s00382-008-0408-4
id ftingv:oai:www.earth-prints.org:2122/4588
record_format openpolar
institution Open Polar
collection Earth-Prints (Istituto Nazionale di Geofisica e Vulcanologia)
op_collection_id ftingv
language English
topic NAO
Ocean Dynamics
01. Atmosphere::01.01. Atmosphere::01.01.02. Climate
spellingShingle NAO
Ocean Dynamics
01. Atmosphere::01.01. Atmosphere::01.01.02. Climate
Bellucci, A.
Gualdi, S.
Scoccimarro, E.
Navarra, A.
NAO–ocean circulation interactions in a coupled general circulation model
topic_facet NAO
Ocean Dynamics
01. Atmosphere::01.01. Atmosphere::01.01.02. Climate
description The interplay between the North Atlantic Oscillation and the large scale ocean circulation is inspected in a 20th century simulation conducted with a state-of-the-art coupled general circulation model. Significant lead-lag covariance between oceanic and tropospheric variables suggests that the system supports a damped oscillatory mode involving an active ocean-atmosphere coupling, with a typical NAO-like space structure and a 5 years timescale, qualitatively consistent with a mid-latitude delayed oscillator paradigm. The two essential processes governing the oscillation are 1) a negative feedback between ocean gyre circulation and the high latitude SST meridional gradient and 2) a positive feedback between SST and the NAO. The atmospheric NAO pattern appears to have a weaker projection on the ocean meridional overturning, compared to the gyre circulation, which leads to a secondary role for the thermohaline circulation in driving the meridional heat transport, and thus the oscillatory mode. ENSEMBLES contract:GOCECT-2003-505539 Published 759-777 3.7. Dinamica del clima e dell'oceano JCR Journal reserved
author2 Bellucci, A.; CMCC
Gualdi, S.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Bologna, Bologna, Italia
Scoccimarro, E.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Bologna, Bologna, Italia
Navarra, A.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Bologna, Bologna, Italia
CMCC
Istituto Nazionale di Geofisica e Vulcanologia, Sezione Bologna, Bologna, Italia
format Article in Journal/Newspaper
author Bellucci, A.
Gualdi, S.
Scoccimarro, E.
Navarra, A.
author_facet Bellucci, A.
Gualdi, S.
Scoccimarro, E.
Navarra, A.
author_sort Bellucci, A.
title NAO–ocean circulation interactions in a coupled general circulation model
title_short NAO–ocean circulation interactions in a coupled general circulation model
title_full NAO–ocean circulation interactions in a coupled general circulation model
title_fullStr NAO–ocean circulation interactions in a coupled general circulation model
title_full_unstemmed NAO–ocean circulation interactions in a coupled general circulation model
title_sort nao–ocean circulation interactions in a coupled general circulation model
publisher SPRINGER
publishDate 2008
url http://hdl.handle.net/2122/4588
https://doi.org/10.1007/s00382-008-0408-4
genre North Atlantic
North Atlantic oscillation
genre_facet North Atlantic
North Atlantic oscillation
op_relation Climate Dynamics
7-8/31(2008)
Anderson D, Bryan K, Gill A, Pacanowski R (1979) The transient response of the North Atlantic: Some model studies, J Geophys Res,84:4795-4815. Bellucci A, Richards KJ (2006) Effects of NAOvariability on the North Atlantic Ocean circulation, Geophys Res Lett ,33,L02612,DOI 10.1029/2005GL024890. Blackman R, Tukey JW (1958) The measurement of power spectra from the point of view of communication engineering. Dover, Mineola, N.Y. Cayan D (1992) Latent and sensible heat flux anomalies over the Northern oceans: driving the sea surface temperature, J Phys Oceanogr, 22:859-881. Czaja A, Frankignoul C (2002) Observed impact of Atlantic SST anomalies on the North Atlantic Oscillation. J Clim, 15:606-623. Czaja A, Marshall J (2001) Observations of atmosphere ocean coupling in the North Atlantic. J Royal Meteor Soc, 127:1893-1916. D’Andrea F, Czaja A, Marshall J (2005) Impact of anomalous ocean heat transport on the North Atlantic Oscillation. J Clim, 18:4955-4969. Deser C, Blackmon R (1993) Surface climate variations over the North Atlantic during winter:1900-1989. J Clim, 10:393-408. Eden C, Greatbatch R (2003) A damped decadal oscillation in the North Atlantic climate system. J Clim, 16:4043-4060. Eden C, Willebrandt J (2001) Mechanisms of interannual to decadal variability in the North Atlantic circulation. J Clim, 14:2266-2280. Feldstein SB (2000) The timescale, power spectra, and climate noise properties of teleconnection patterns. J Clim, 13:4430-4440. Ferreira D, Frankignoul C (2005) The transient atmospheric to midlatitude SST anomalies. J Clim, 18:1049-1067. Fichefet T, Morales-Maqueda MA (1999) Modelling the influence of snow accumulation and snow-ice formation on the seasonal cycle of the Antarctic sea-ice cover. Clim Dyn, 15:251- 22 268. Frankignoul C, Hasselmann K (1977) Stochastic climate models, part II: applications to seasurface temperature variability and thermocline variability. Tellus, 29:289-305. Frankignoul C, Czaja A, L’Heveder B (1998) Air-sea feedback in the North Atlantic and surface boundary conditions for ocean models. J Clim, 11:2310-2324. Frankignoul C, Kestenare E, Senn´echael N, de Co¨etlogon, D’Andrea F (2000) On decadal-scale ocean-atmosphere interactions in the extended ECHAM1/LSG climate simulation. Clim Dyn, 16:333-354. Gualdi S, Navarra A, Guilyardi E, Delecluse P (2003a) Assessment of the tropical Indo-Pacific climate in the SINTEX CGCM. Ann. Geophysics, 46:1-26. Gualdi S, Guilyardi E, Navarra A, Masina S, Delecluse P (2003b) The interannual variability in the tropical Indian Ocean as simulated by a CGCM. Clim Dyn, 20:567-582. Gualdi S, Scoccimarro E, Navarra A (2007) Changes in tropical cyclone activity due to global warming: results from a high-resolution coupled general circulation model. Submitted to J Clim. Guilyardi E, Delecluse P, Gualdi S, Navarra A (2003) Mechanisms for ENSO phase change in a coupled GCM. Clim Dyn, 16:1141-1158. Hurrell J, Kushnir Y, Ottersen G, Visbeck M (2003) An overview of the North Atlantic Oscillation. In: The North Atlantic Oscillation:climatic significance and environmental impact, Ed: J Hurrell, J Kushnir, G Ottersen and M Visbeck. Kaplan A, Kushnir Y, CaneM, Blumenthal B (1997) Reduced space optimal analysis for historical datasets:136 years of Atlantic sea surface temperatures. J Geophys Res, 102:27835-27860. Killworth P, Chelton D, de Szoeke R (1997) The speed of observed and theoretical long extratropical planetary waves. J Phys Oceanogr, 27:1946-1966. Kuhlbrodt T, Griesel A, Montoya M, Levermann A, Hofmann M., Rahmstorf S. (2007) On the driving processes of the Atlantic meridional overturning circulation. Rev Geophys, 45:1-32. Latif M, Barnett T (1996) Decadal climate variability over the North Pacific and North America: dynamics and predictability. J Clim, 9:2407-2423. 23 Marotzke J, Klinger B (2000) A study of the interaction of the North Atlantic Oscillation with the ocean circulation. J Phys Oceanogr, 30:955-970. Marshall J, Johnson H, Goodman J (2001) A study of the interaction of the North Atlantic Oscillation with the ocean circulation. J Clim, 14:1399-1421. Peng S, Whitaker JS (1999) Mechanisms determining the atmospheric response to midlatitude SST anomalies. J Clim, 12:1393-1408. Peng S, Robinson W, Li S (2002) North Atlantic SST forcing of the NAO and relationships with intrinsic hemispheric variability. Geophys Res Lett, 29,1276, DOI 10.1029/2001GL014043. Peng S, Robinson W, Li S (2003) Mechanisms for the NAO responses to the North Atlantic SST tripole. J Clim, 16:1987-2004. Rodwell M, Rowell D, Folland C (1999) Oceanic forcing of the wintertime North Atlantic Oscillation and European climate. Nature, 398:320-323. Saravanan R, McWilliams J (1998) Advective ocean-atmosphere interaction: an analytical stochastic model with implications for decadal variability. J Clim, 11:165-188. Stephenson D, Pavan V, Collins M, Junge M, Quadrelli R (2006) North Atlantic Oscillation response to transient greenhouse gas forcing and the impact on European winter climate: a CMIP2 multi-model assessment. Clim Dyn. 27:401-420, DOI 10.1007/s00382-006-0140-x. Storch HV, Zwiers FW(1999) Statistical analysis in climate research. Cambridge University Press, United Kingdom. Sutton RT, Allen MR (1997) Decadal predictability of North Atlantic sea surface temperature and climate. Nature, 388:563-567. Thompson D, Lee S, Baldwin M (2003) Atmospheric processes governing the Northern Hemisphere Annular Mode/North Atlantic Oscillation In: The North Atlantic Oscillation:climatic significance and environmental impact, Ed: J Hurrell, J Kushnir, G Ottersen and M Visbeck. Visbeck M, Chassignet E, Curry RG, Delworth T, Dickson R, Krahmann G (2003) The ocean’s response to North Atlantic Oscillation. In: The North Atlantic Oscillation: climatic significance and environmental impact, Ed: J Hurrell, J Kushnir, G Ottersen and M Visbeck. Wunsch C (1999) The interpretation of short climate records, with comments on the North Atlantic 24 Oscillation and Southern Oscillations. Bull Am Meteor Soc, 80:245-255. Zorita E, Frankignoul C (1997) Modes of North Atlantic decadal variability in the ECHAM1/LSG coupled atmosphere-ocean general circulation model. J Clim, 10:183:200.
http://hdl.handle.net/2122/4588
doi:10.1007/s00382-008-0408-4
op_rights restricted
op_doi https://doi.org/10.1007/s00382-008-0408-4
https://doi.org/10.1029/2005GL024890.
container_title Climate Dynamics
container_volume 31
container_issue 7-8
container_start_page 759
op_container_end_page 777
_version_ 1766131515221082112
spelling ftingv:oai:www.earth-prints.org:2122/4588 2023-05-15T17:33:07+02:00 NAO–ocean circulation interactions in a coupled general circulation model Bellucci, A. Gualdi, S. Scoccimarro, E. Navarra, A. Bellucci, A.; CMCC Gualdi, S.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Bologna, Bologna, Italia Scoccimarro, E.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Bologna, Bologna, Italia Navarra, A.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Bologna, Bologna, Italia CMCC Istituto Nazionale di Geofisica e Vulcanologia, Sezione Bologna, Bologna, Italia 2008-12 http://hdl.handle.net/2122/4588 https://doi.org/10.1007/s00382-008-0408-4 en eng SPRINGER Climate Dynamics 7-8/31(2008) Anderson D, Bryan K, Gill A, Pacanowski R (1979) The transient response of the North Atlantic: Some model studies, J Geophys Res,84:4795-4815. Bellucci A, Richards KJ (2006) Effects of NAOvariability on the North Atlantic Ocean circulation, Geophys Res Lett ,33,L02612,DOI 10.1029/2005GL024890. Blackman R, Tukey JW (1958) The measurement of power spectra from the point of view of communication engineering. Dover, Mineola, N.Y. Cayan D (1992) Latent and sensible heat flux anomalies over the Northern oceans: driving the sea surface temperature, J Phys Oceanogr, 22:859-881. Czaja A, Frankignoul C (2002) Observed impact of Atlantic SST anomalies on the North Atlantic Oscillation. J Clim, 15:606-623. Czaja A, Marshall J (2001) Observations of atmosphere ocean coupling in the North Atlantic. J Royal Meteor Soc, 127:1893-1916. D’Andrea F, Czaja A, Marshall J (2005) Impact of anomalous ocean heat transport on the North Atlantic Oscillation. J Clim, 18:4955-4969. Deser C, Blackmon R (1993) Surface climate variations over the North Atlantic during winter:1900-1989. J Clim, 10:393-408. Eden C, Greatbatch R (2003) A damped decadal oscillation in the North Atlantic climate system. J Clim, 16:4043-4060. Eden C, Willebrandt J (2001) Mechanisms of interannual to decadal variability in the North Atlantic circulation. J Clim, 14:2266-2280. Feldstein SB (2000) The timescale, power spectra, and climate noise properties of teleconnection patterns. J Clim, 13:4430-4440. Ferreira D, Frankignoul C (2005) The transient atmospheric to midlatitude SST anomalies. J Clim, 18:1049-1067. Fichefet T, Morales-Maqueda MA (1999) Modelling the influence of snow accumulation and snow-ice formation on the seasonal cycle of the Antarctic sea-ice cover. Clim Dyn, 15:251- 22 268. Frankignoul C, Hasselmann K (1977) Stochastic climate models, part II: applications to seasurface temperature variability and thermocline variability. Tellus, 29:289-305. Frankignoul C, Czaja A, L’Heveder B (1998) Air-sea feedback in the North Atlantic and surface boundary conditions for ocean models. J Clim, 11:2310-2324. Frankignoul C, Kestenare E, Senn´echael N, de Co¨etlogon, D’Andrea F (2000) On decadal-scale ocean-atmosphere interactions in the extended ECHAM1/LSG climate simulation. Clim Dyn, 16:333-354. Gualdi S, Navarra A, Guilyardi E, Delecluse P (2003a) Assessment of the tropical Indo-Pacific climate in the SINTEX CGCM. Ann. Geophysics, 46:1-26. Gualdi S, Guilyardi E, Navarra A, Masina S, Delecluse P (2003b) The interannual variability in the tropical Indian Ocean as simulated by a CGCM. Clim Dyn, 20:567-582. Gualdi S, Scoccimarro E, Navarra A (2007) Changes in tropical cyclone activity due to global warming: results from a high-resolution coupled general circulation model. Submitted to J Clim. Guilyardi E, Delecluse P, Gualdi S, Navarra A (2003) Mechanisms for ENSO phase change in a coupled GCM. Clim Dyn, 16:1141-1158. Hurrell J, Kushnir Y, Ottersen G, Visbeck M (2003) An overview of the North Atlantic Oscillation. In: The North Atlantic Oscillation:climatic significance and environmental impact, Ed: J Hurrell, J Kushnir, G Ottersen and M Visbeck. Kaplan A, Kushnir Y, CaneM, Blumenthal B (1997) Reduced space optimal analysis for historical datasets:136 years of Atlantic sea surface temperatures. J Geophys Res, 102:27835-27860. Killworth P, Chelton D, de Szoeke R (1997) The speed of observed and theoretical long extratropical planetary waves. J Phys Oceanogr, 27:1946-1966. Kuhlbrodt T, Griesel A, Montoya M, Levermann A, Hofmann M., Rahmstorf S. (2007) On the driving processes of the Atlantic meridional overturning circulation. Rev Geophys, 45:1-32. Latif M, Barnett T (1996) Decadal climate variability over the North Pacific and North America: dynamics and predictability. J Clim, 9:2407-2423. 23 Marotzke J, Klinger B (2000) A study of the interaction of the North Atlantic Oscillation with the ocean circulation. J Phys Oceanogr, 30:955-970. Marshall J, Johnson H, Goodman J (2001) A study of the interaction of the North Atlantic Oscillation with the ocean circulation. J Clim, 14:1399-1421. Peng S, Whitaker JS (1999) Mechanisms determining the atmospheric response to midlatitude SST anomalies. J Clim, 12:1393-1408. Peng S, Robinson W, Li S (2002) North Atlantic SST forcing of the NAO and relationships with intrinsic hemispheric variability. Geophys Res Lett, 29,1276, DOI 10.1029/2001GL014043. Peng S, Robinson W, Li S (2003) Mechanisms for the NAO responses to the North Atlantic SST tripole. J Clim, 16:1987-2004. Rodwell M, Rowell D, Folland C (1999) Oceanic forcing of the wintertime North Atlantic Oscillation and European climate. Nature, 398:320-323. Saravanan R, McWilliams J (1998) Advective ocean-atmosphere interaction: an analytical stochastic model with implications for decadal variability. J Clim, 11:165-188. Stephenson D, Pavan V, Collins M, Junge M, Quadrelli R (2006) North Atlantic Oscillation response to transient greenhouse gas forcing and the impact on European winter climate: a CMIP2 multi-model assessment. Clim Dyn. 27:401-420, DOI 10.1007/s00382-006-0140-x. Storch HV, Zwiers FW(1999) Statistical analysis in climate research. Cambridge University Press, United Kingdom. Sutton RT, Allen MR (1997) Decadal predictability of North Atlantic sea surface temperature and climate. Nature, 388:563-567. Thompson D, Lee S, Baldwin M (2003) Atmospheric processes governing the Northern Hemisphere Annular Mode/North Atlantic Oscillation In: The North Atlantic Oscillation:climatic significance and environmental impact, Ed: J Hurrell, J Kushnir, G Ottersen and M Visbeck. Visbeck M, Chassignet E, Curry RG, Delworth T, Dickson R, Krahmann G (2003) The ocean’s response to North Atlantic Oscillation. In: The North Atlantic Oscillation: climatic significance and environmental impact, Ed: J Hurrell, J Kushnir, G Ottersen and M Visbeck. Wunsch C (1999) The interpretation of short climate records, with comments on the North Atlantic 24 Oscillation and Southern Oscillations. Bull Am Meteor Soc, 80:245-255. Zorita E, Frankignoul C (1997) Modes of North Atlantic decadal variability in the ECHAM1/LSG coupled atmosphere-ocean general circulation model. J Clim, 10:183:200. http://hdl.handle.net/2122/4588 doi:10.1007/s00382-008-0408-4 restricted NAO Ocean Dynamics 01. Atmosphere::01.01. Atmosphere::01.01.02. Climate article 2008 ftingv https://doi.org/10.1007/s00382-008-0408-4 https://doi.org/10.1029/2005GL024890. 2022-07-29T06:05:08Z The interplay between the North Atlantic Oscillation and the large scale ocean circulation is inspected in a 20th century simulation conducted with a state-of-the-art coupled general circulation model. Significant lead-lag covariance between oceanic and tropospheric variables suggests that the system supports a damped oscillatory mode involving an active ocean-atmosphere coupling, with a typical NAO-like space structure and a 5 years timescale, qualitatively consistent with a mid-latitude delayed oscillator paradigm. The two essential processes governing the oscillation are 1) a negative feedback between ocean gyre circulation and the high latitude SST meridional gradient and 2) a positive feedback between SST and the NAO. The atmospheric NAO pattern appears to have a weaker projection on the ocean meridional overturning, compared to the gyre circulation, which leads to a secondary role for the thermohaline circulation in driving the meridional heat transport, and thus the oscillatory mode. ENSEMBLES contract:GOCECT-2003-505539 Published 759-777 3.7. Dinamica del clima e dell'oceano JCR Journal reserved Article in Journal/Newspaper North Atlantic North Atlantic oscillation Earth-Prints (Istituto Nazionale di Geofisica e Vulcanologia) Climate Dynamics 31 7-8 759 777