Changes in Tropical Cyclone Activity due to Global Warming: Results from a High-Resolution Coupled General Circulation Model.

This study investigates the possible changes that greenhouse global warming might generate in the characteristics of tropical cyclones (TCs). The analysis has been performed using scenario climate simulations carried out with a fully coupled high-resolution global general circulation model. The capa...

Full description

Bibliographic Details
Published in:Journal of Climate
Main Authors: Gualdi, S., Scoccimarro, E., Navarra, A.
Other Authors: Gualdi, S.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Bologna, Bologna, Italia, Scoccimarro, E.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Bologna, Bologna, Italia, Navarra, A.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Bologna, Bologna, Italia, Istituto Nazionale di Geofisica e Vulcanologia, Sezione Bologna, Bologna, Italia
Format: Article in Journal/Newspaper
Language:English
Published: 2008
Subjects:
Online Access:http://hdl.handle.net/2122/4272
https://doi.org/10.1175/2008JCLI1921.1
Description
Summary:This study investigates the possible changes that greenhouse global warming might generate in the characteristics of tropical cyclones (TCs). The analysis has been performed using scenario climate simulations carried out with a fully coupled high-resolution global general circulation model. The capability of the model to reproduce a reasonably realistic TC climatology has been assessed by comparing the model results from a simulation of the twentieth century with observations. The model appears to be able to simulate tropical cyclone–like vortices with many features similar to the observed TCs. The simulated TC activity exhibits realistic geographical distribution, seasonal modulation, and interannual variability, suggesting that the model is able to reproduce the major basic mechanisms that link TC occurrence with large-scale circulation. The results from the climate scenarios reveal a substantial general reduction of TC frequency when the atmospheric CO2 concentration is doubled and quadrupled. The reduction appears particularly evident for the tropical western North Pacific (WNP) and North Atlantic (ATL). In the NWP the weaker TC activity seems to be associated with reduced convective instabilities. In the ATL region the weaker TC activity seems to be due to both the increased stability of the atmosphere and a stronger vertical wind shear. Despite the generally reduced TC activity, there is evidence of increased rainfall associated with the simulated cyclones. Finally, the action of the TCs remains well confined to the tropical region and the peak of TC number remains equatorward of 20° latitude in both hemispheres, notwithstanding the overall warming of the tropical upper ocean and the expansion poleward of warm SSTs. Euro-Mediterranean Centre for Climate Change. European Community project ENSEMBLES, Contract GOCE-CT-2003-505539. Published 5204-5228 3.7. Dinamica del clima e dell'oceano JCR Journal reserved