The Impact of Precipitation and Sublimation Processes on Snow Accumulation: Preliminary Results

The need for climate change prediction has focused attention on the Surface Mass Balance (SMB) of the Antarctic continent and on how it influences the sea level. The SMB of the Antarctic plateau is governed by the equilibrium between precipitation and ablation processes such as sublimation and wind-...

Full description

Bibliographic Details
Published in:Climate Dynamics
Main Authors: Scarchilli, C., Frezzotti, M., Didonfrancesco, G., Valt, M., Urbini, S., De Silvestri, L., Dolci, S., Iaccarino, A., Grigioni, P.
Other Authors: Scarchilli, C.; Ente per le Nuove Tecnologie, l’Energia e l’Ambiente, ‘Progetto Speciale Clima Globale’, Rome - Italy, Frezzotti, M.; Ente per le Nuove Tecnologie, l’Energia e l’Ambiente, ‘Progetto Speciale Clima Globale’, Rome - Italy, Didonfrancesco, G.; Ente per le Nuove Tecnologie, l’Energia e l’Ambiente, ‘Progetto Speciale Clima Globale’, Rome - Italy, Valt, M.; A.R.P.A.V., Centro Valanghe di Arabba, Livinallongo del Col di Lana (Belluno) - Italy, Urbini, S.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Roma2, Roma, Italia, De Silvestri, L.; Ente per le Nuove Tecnologie, l’Energia e l’Ambiente, ‘Progetto Speciale Clima Globale’, Rome - Italy, Dolci, S.; Consiglio Nazionale delle Ricerche, Rome - Italy, Iaccarino, A.; Ente per le Nuove Tecnologie, l’Energia e l’Ambiente, ‘Progetto Speciale Clima Globale’, Rome - Italy, Grigioni, P.; Ente per le Nuove Tecnologie, l’Energia e l’Ambiente, ‘Progetto Speciale Clima Globale’, Rome - Italy, Ente per le Nuove Tecnologie, l’Energia e l’Ambiente, ‘Progetto Speciale Clima Globale’, Rome - Italy, A.R.P.A.V., Centro Valanghe di Arabba, Livinallongo del Col di Lana (Belluno) - Italy, Istituto Nazionale di Geofisica e Vulcanologia, Sezione Roma2, Roma, Italia, Consiglio Nazionale delle Ricerche, Rome - Italy
Format: Article in Journal/Newspaper
Language:English
Published: Terra Antartica Publication 2008
Subjects:
Online Access:http://hdl.handle.net/2122/4046
id ftingv:oai:www.earth-prints.org:2122/4046
record_format openpolar
institution Open Polar
collection Earth-Prints (Istituto Nazionale di Geofisica e Vulcanologia)
op_collection_id ftingv
language English
topic Sublimation processes
Snow accumulation
Mass balance
02. Cryosphere::02.02. Glaciers::02.02.02. Cryosphere/atmosphere Interaction
02. Cryosphere::02.02. Glaciers::02.02.06. Mass balance
spellingShingle Sublimation processes
Snow accumulation
Mass balance
02. Cryosphere::02.02. Glaciers::02.02.02. Cryosphere/atmosphere Interaction
02. Cryosphere::02.02. Glaciers::02.02.06. Mass balance
Scarchilli, C.
Frezzotti, M.
Didonfrancesco, G.
Valt, M.
Urbini, S.
De Silvestri, L.
Dolci, S.
Iaccarino, A.
Grigioni, P.
The Impact of Precipitation and Sublimation Processes on Snow Accumulation: Preliminary Results
topic_facet Sublimation processes
Snow accumulation
Mass balance
02. Cryosphere::02.02. Glaciers::02.02.02. Cryosphere/atmosphere Interaction
02. Cryosphere::02.02. Glaciers::02.02.06. Mass balance
description The need for climate change prediction has focused attention on the Surface Mass Balance (SMB) of the Antarctic continent and on how it influences the sea level. The SMB of the Antarctic plateau is governed by the equilibrium between precipitation and ablation processes such as sublimation and wind-borne snow redistribution. At scales of hundreds of kilometres snowfall variability dominates the snow accumulation process (Dery and Yau, 2002); at smaller scales, postdepositional process such as wind-borne redistribution, surface sublimation and snowdrift sublimation becomes more important. In recent years the sublimation phenomenon has received much attention from the glacial-meteorological community, and some theoretical studies have tried to model it (Bintanja, 1998; Dery & Yau, 2001b; Frezzotti, 2004). There are two different types of sublimation: surface sublimation and blowing snow sublimation. Surface sublimation is mostly determined by the continual exchange of water between the air (in the vapour phase) and the snow pack (in the solid phase) due to solar irradiance. Blowing snow sublimation is possibly the more effective of the two sublimation processes. It occurs when snow particles at the surface are blown by winds exceeding a certain threshold value. Particles suspended in the sub saturated Atmospheric Boundary Layer (ABL) sublimate at a relatively fast rate, cooling air mass transported by the wind and increasing the local atmospheric moisture content. When the first few meters of the ABL are completely saturated, the process is dumped. It takes a long time to meet this condition because katabatic winds transport saturated air masses to the coast, thereby reactivating sublimation. The role of sublimation in snow accumulation and its high variability at local scales are not fully understood due to the few available measurements in Antarctica. Further study and field experiments are required. Published 47-50 3.8. Geofisica per l'ambiente N/A or not JCR open
author2 Scarchilli, C.; Ente per le Nuove Tecnologie, l’Energia e l’Ambiente, ‘Progetto Speciale Clima Globale’, Rome - Italy
Frezzotti, M.; Ente per le Nuove Tecnologie, l’Energia e l’Ambiente, ‘Progetto Speciale Clima Globale’, Rome - Italy
Didonfrancesco, G.; Ente per le Nuove Tecnologie, l’Energia e l’Ambiente, ‘Progetto Speciale Clima Globale’, Rome - Italy
Valt, M.; A.R.P.A.V., Centro Valanghe di Arabba, Livinallongo del Col di Lana (Belluno) - Italy
Urbini, S.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Roma2, Roma, Italia
De Silvestri, L.; Ente per le Nuove Tecnologie, l’Energia e l’Ambiente, ‘Progetto Speciale Clima Globale’, Rome - Italy
Dolci, S.; Consiglio Nazionale delle Ricerche, Rome - Italy
Iaccarino, A.; Ente per le Nuove Tecnologie, l’Energia e l’Ambiente, ‘Progetto Speciale Clima Globale’, Rome - Italy
Grigioni, P.; Ente per le Nuove Tecnologie, l’Energia e l’Ambiente, ‘Progetto Speciale Clima Globale’, Rome - Italy
Ente per le Nuove Tecnologie, l’Energia e l’Ambiente, ‘Progetto Speciale Clima Globale’, Rome - Italy
A.R.P.A.V., Centro Valanghe di Arabba, Livinallongo del Col di Lana (Belluno) - Italy
Istituto Nazionale di Geofisica e Vulcanologia, Sezione Roma2, Roma, Italia
Consiglio Nazionale delle Ricerche, Rome - Italy
format Article in Journal/Newspaper
author Scarchilli, C.
Frezzotti, M.
Didonfrancesco, G.
Valt, M.
Urbini, S.
De Silvestri, L.
Dolci, S.
Iaccarino, A.
Grigioni, P.
author_facet Scarchilli, C.
Frezzotti, M.
Didonfrancesco, G.
Valt, M.
Urbini, S.
De Silvestri, L.
Dolci, S.
Iaccarino, A.
Grigioni, P.
author_sort Scarchilli, C.
title The Impact of Precipitation and Sublimation Processes on Snow Accumulation: Preliminary Results
title_short The Impact of Precipitation and Sublimation Processes on Snow Accumulation: Preliminary Results
title_full The Impact of Precipitation and Sublimation Processes on Snow Accumulation: Preliminary Results
title_fullStr The Impact of Precipitation and Sublimation Processes on Snow Accumulation: Preliminary Results
title_full_unstemmed The Impact of Precipitation and Sublimation Processes on Snow Accumulation: Preliminary Results
title_sort impact of precipitation and sublimation processes on snow accumulation: preliminary results
publisher Terra Antartica Publication
publishDate 2008
url http://hdl.handle.net/2122/4046
geographic Antarctic
The Antarctic
geographic_facet Antarctic
The Antarctic
genre Antarc*
Antarctic
Antarctica
Arctic
genre_facet Antarc*
Antarctic
Antarctica
Arctic
op_relation Terra Antartica Reports
/ 14 (2008)
Bintanja R., 1998. The contribution of snowdrift sublimation to the surface mass balance of Antarctica, Ann. Glaciol., 27, 251–259. Bintanja R., 2000. The surface heat budget of Antarctic snow and blue ice: interpretation of temporal and spatial variability. J. Geophys. Res., 105, 24387-24407. Bintanja R., 2000. Snowdrift suspension and atmospheric turbulence. Part I: Theoretical background and model description. Boundary-Layer Meteorol., 95, 343-368. Bintanja R. & C.H. Reijmer, 2001, A simple parametrization for snowdrift sublimation over Antarctic snow surfaces. J. Geophys. Res., 106, 731739-31748. Dery S.J. & M.K. Yau, 2001a. Simulation of blowing snow in the Canadian Arctic using a double-moment model. Boundary-Layer Meteorol., 99, 297– 316. Dery S.J. & M.K. Yau, 2001b. Simulation of an Arctic ground blizzard using a coupled blowing snowatmosphere model. J. Hydrometeorol., 2, 579–598. Frezzotti M., M. Pourchet, O. Flora, S. Gandolfi, M. Gay, S. Urbini, C.Vincent, S. Becagli, R. Gragnani, M. Proposito, M. Severi, R. Traversi, R. Udisti & Fily M., 2004. New estimations of precipitation and surface sublimation in East Antarctica from snow accumulation measurements. Climate Dynamics, 23(7-8), 803-813, DOI:10.1007/s00382-004-0462-5. Van den Broeke M.R., 1997. Spatial and temporal variation of sublimation on Antarctica: Results of a high-resolution general circulation model. J. Geophys. Res., 102, 29, 765– 29, 777. Van Has, D., Van den Broeke, M.R., Reijmer C. & Van de Wal R., 2005. The summer surface energy balance of the hight Antarctic plateau’, Boundary-Layer Meteorol., 115, 289-317.
http://hdl.handle.net/2122/4046
op_rights open
container_title Climate Dynamics
container_volume 23
container_issue 7-8
container_start_page 803
op_container_end_page 813
_version_ 1766255667044155392
spelling ftingv:oai:www.earth-prints.org:2122/4046 2023-05-15T13:51:39+02:00 The Impact of Precipitation and Sublimation Processes on Snow Accumulation: Preliminary Results Scarchilli, C. Frezzotti, M. Didonfrancesco, G. Valt, M. Urbini, S. De Silvestri, L. Dolci, S. Iaccarino, A. Grigioni, P. Scarchilli, C.; Ente per le Nuove Tecnologie, l’Energia e l’Ambiente, ‘Progetto Speciale Clima Globale’, Rome - Italy Frezzotti, M.; Ente per le Nuove Tecnologie, l’Energia e l’Ambiente, ‘Progetto Speciale Clima Globale’, Rome - Italy Didonfrancesco, G.; Ente per le Nuove Tecnologie, l’Energia e l’Ambiente, ‘Progetto Speciale Clima Globale’, Rome - Italy Valt, M.; A.R.P.A.V., Centro Valanghe di Arabba, Livinallongo del Col di Lana (Belluno) - Italy Urbini, S.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Roma2, Roma, Italia De Silvestri, L.; Ente per le Nuove Tecnologie, l’Energia e l’Ambiente, ‘Progetto Speciale Clima Globale’, Rome - Italy Dolci, S.; Consiglio Nazionale delle Ricerche, Rome - Italy Iaccarino, A.; Ente per le Nuove Tecnologie, l’Energia e l’Ambiente, ‘Progetto Speciale Clima Globale’, Rome - Italy Grigioni, P.; Ente per le Nuove Tecnologie, l’Energia e l’Ambiente, ‘Progetto Speciale Clima Globale’, Rome - Italy Ente per le Nuove Tecnologie, l’Energia e l’Ambiente, ‘Progetto Speciale Clima Globale’, Rome - Italy A.R.P.A.V., Centro Valanghe di Arabba, Livinallongo del Col di Lana (Belluno) - Italy Istituto Nazionale di Geofisica e Vulcanologia, Sezione Roma2, Roma, Italia Consiglio Nazionale delle Ricerche, Rome - Italy 2008-07 http://hdl.handle.net/2122/4046 en eng Terra Antartica Publication Terra Antartica Reports / 14 (2008) Bintanja R., 1998. The contribution of snowdrift sublimation to the surface mass balance of Antarctica, Ann. Glaciol., 27, 251–259. Bintanja R., 2000. The surface heat budget of Antarctic snow and blue ice: interpretation of temporal and spatial variability. J. Geophys. Res., 105, 24387-24407. Bintanja R., 2000. Snowdrift suspension and atmospheric turbulence. Part I: Theoretical background and model description. Boundary-Layer Meteorol., 95, 343-368. Bintanja R. & C.H. Reijmer, 2001, A simple parametrization for snowdrift sublimation over Antarctic snow surfaces. J. Geophys. Res., 106, 731739-31748. Dery S.J. & M.K. Yau, 2001a. Simulation of blowing snow in the Canadian Arctic using a double-moment model. Boundary-Layer Meteorol., 99, 297– 316. Dery S.J. & M.K. Yau, 2001b. Simulation of an Arctic ground blizzard using a coupled blowing snowatmosphere model. J. Hydrometeorol., 2, 579–598. Frezzotti M., M. Pourchet, O. Flora, S. Gandolfi, M. Gay, S. Urbini, C.Vincent, S. Becagli, R. Gragnani, M. Proposito, M. Severi, R. Traversi, R. Udisti & Fily M., 2004. New estimations of precipitation and surface sublimation in East Antarctica from snow accumulation measurements. Climate Dynamics, 23(7-8), 803-813, DOI:10.1007/s00382-004-0462-5. Van den Broeke M.R., 1997. Spatial and temporal variation of sublimation on Antarctica: Results of a high-resolution general circulation model. J. Geophys. Res., 102, 29, 765– 29, 777. Van Has, D., Van den Broeke, M.R., Reijmer C. & Van de Wal R., 2005. The summer surface energy balance of the hight Antarctic plateau’, Boundary-Layer Meteorol., 115, 289-317. http://hdl.handle.net/2122/4046 open Sublimation processes Snow accumulation Mass balance 02. Cryosphere::02.02. Glaciers::02.02.02. Cryosphere/atmosphere Interaction 02. Cryosphere::02.02. Glaciers::02.02.06. Mass balance article 2008 ftingv 2022-07-29T06:04:57Z The need for climate change prediction has focused attention on the Surface Mass Balance (SMB) of the Antarctic continent and on how it influences the sea level. The SMB of the Antarctic plateau is governed by the equilibrium between precipitation and ablation processes such as sublimation and wind-borne snow redistribution. At scales of hundreds of kilometres snowfall variability dominates the snow accumulation process (Dery and Yau, 2002); at smaller scales, postdepositional process such as wind-borne redistribution, surface sublimation and snowdrift sublimation becomes more important. In recent years the sublimation phenomenon has received much attention from the glacial-meteorological community, and some theoretical studies have tried to model it (Bintanja, 1998; Dery & Yau, 2001b; Frezzotti, 2004). There are two different types of sublimation: surface sublimation and blowing snow sublimation. Surface sublimation is mostly determined by the continual exchange of water between the air (in the vapour phase) and the snow pack (in the solid phase) due to solar irradiance. Blowing snow sublimation is possibly the more effective of the two sublimation processes. It occurs when snow particles at the surface are blown by winds exceeding a certain threshold value. Particles suspended in the sub saturated Atmospheric Boundary Layer (ABL) sublimate at a relatively fast rate, cooling air mass transported by the wind and increasing the local atmospheric moisture content. When the first few meters of the ABL are completely saturated, the process is dumped. It takes a long time to meet this condition because katabatic winds transport saturated air masses to the coast, thereby reactivating sublimation. The role of sublimation in snow accumulation and its high variability at local scales are not fully understood due to the few available measurements in Antarctica. Further study and field experiments are required. Published 47-50 3.8. Geofisica per l'ambiente N/A or not JCR open Article in Journal/Newspaper Antarc* Antarctic Antarctica Arctic Earth-Prints (Istituto Nazionale di Geofisica e Vulcanologia) Antarctic The Antarctic Climate Dynamics 23 7-8 803 813