Measurements of low amounts of precipitable water vapor by millimeter wave spectroscopy: An intercomparison with radiosonde, Raman lidar, and Fourier transform infrared data

Observations of very low amounts of precipitable water vapor (PWV) by means of the Ground-Based Millimeter wave Spectrometer (GBMS) are discussed. Low amounts of column water vapor (between 0.5 and 4 mm) are typical of high mountain sites and polar regions, especially during winter, and are difficul...

Full description

Bibliographic Details
Published in:Journal of Geophysical Research
Main Authors: Fiorucci, I., Muscari, G., Bianchi, C., Di Girolamo, P., Esposito, F., Grieco, G., Summa, D., Bianchini, G., Palchetti, L., Cacciani, M., Di Iorio, T., Pavese, G., Cimini, D., de Zafra, R.
Other Authors: Fiorucci, I.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Roma2, Roma, Italia, Muscari, G.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Roma2, Roma, Italia, Bianchi, C.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Roma2, Roma, Italia, Di Girolamo, P.; Università della Basilicata, Esposito, F.; Università della Basilicata, Grieco, G.; Università della Basilicata, Summa, D.; Università della Basilicata, Bianchini, G.; Istituto di Fisica Applicata, CNR, Palchetti, L.; Istituto di Fisica Applicata, CNR, Cacciani, M.; Università di Roma "La Sapienza", Di Iorio, T.; Università di Roma "La Sapienza", Pavese, G.; Istituto di Metodologie per l'Analisi Ambientale, CNR, Cimini, D.; Università di L'Aquila, de Zafra, R.; State University of New York at Stony Brook, Istituto Nazionale di Geofisica e Vulcanologia, Sezione Roma2, Roma, Italia, Università della Basilicata, Istituto di Fisica Applicata, CNR, Università di Roma "La Sapienza", Istituto di Metodologie per l'Analisi Ambientale, CNR, Università di L'Aquila, State University of New York at Stony Brook
Format: Article in Journal/Newspaper
Language:English
Published: American Geophysical Union 2008
Subjects:
Online Access:http://hdl.handle.net/2122/4000
http://www.agu.org/journals/jd/jd0814/2008JD009831/
https://doi.org/10.1029/2008JD009831
id ftingv:oai:www.earth-prints.org:2122/4000
record_format openpolar
institution Open Polar
collection Earth-Prints (Istituto Nazionale di Geofisica e Vulcanologia)
op_collection_id ftingv
language English
topic millimeter wave spectroscopy
column water vapor
01. Atmosphere::01.01. Atmosphere::01.01.01. Composition and Structure
spellingShingle millimeter wave spectroscopy
column water vapor
01. Atmosphere::01.01. Atmosphere::01.01.01. Composition and Structure
Fiorucci, I.
Muscari, G.
Bianchi, C.
Di Girolamo, P.
Esposito, F.
Grieco, G.
Summa, D.
Bianchini, G.
Palchetti, L.
Cacciani, M.
Di Iorio, T.
Pavese, G.
Cimini, D.
de Zafra, R.
Measurements of low amounts of precipitable water vapor by millimeter wave spectroscopy: An intercomparison with radiosonde, Raman lidar, and Fourier transform infrared data
topic_facet millimeter wave spectroscopy
column water vapor
01. Atmosphere::01.01. Atmosphere::01.01.01. Composition and Structure
description Observations of very low amounts of precipitable water vapor (PWV) by means of the Ground-Based Millimeter wave Spectrometer (GBMS) are discussed. Low amounts of column water vapor (between 0.5 and 4 mm) are typical of high mountain sites and polar regions, especially during winter, and are difficult to measure accurately because of the lack of sensitivity of conventional instruments to such low PWV contents. The technique used involves the measurement of atmospheric opacity in the range between 230 and 280 GHz with a spectral resolution of 4 GHz, followed by the conversion to precipitable water vapor using a linear relationship. We present the intercomparison of this data set with simultaneous PWV observations obtained with Vaisala RS92k radiosondes, a Raman lidar, and an IR Fourier transform spectrometer. These sets of measurements were carried out during the primary field campaign of the Earth Cooling by Water vapor Radiation (ECOWAR) project which took place at Breuil-Cervinia (45.9N, 7.6E, elevation 1990 m) and Plateau Rosa (45.9N, 7.7E, elevation 3490 m), Italy, from 3 to 16 March 2007. GBMS PWV measurements show a good agreement with the other three data sets exhibiting a mean difference between observations of 9%. The considerable number of data points available for the GBMS versus lidar PWV correlation allows an additional analysis which indicates negligible systematic differences between the two data sets. Published D14314 1.8. Osservazioni di geofisica ambientale JCR Journal reserved
author2 Fiorucci, I.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Roma2, Roma, Italia
Muscari, G.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Roma2, Roma, Italia
Bianchi, C.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Roma2, Roma, Italia
Di Girolamo, P.; Università della Basilicata
Esposito, F.; Università della Basilicata
Grieco, G.; Università della Basilicata
Summa, D.; Università della Basilicata
Bianchini, G.; Istituto di Fisica Applicata, CNR
Palchetti, L.; Istituto di Fisica Applicata, CNR
Cacciani, M.; Università di Roma "La Sapienza"
Di Iorio, T.; Università di Roma "La Sapienza"
Pavese, G.; Istituto di Metodologie per l'Analisi Ambientale, CNR
Cimini, D.; Università di L'Aquila
de Zafra, R.; State University of New York at Stony Brook
Istituto Nazionale di Geofisica e Vulcanologia, Sezione Roma2, Roma, Italia
Università della Basilicata
Istituto di Fisica Applicata, CNR
Università di Roma "La Sapienza"
Istituto di Metodologie per l'Analisi Ambientale, CNR
Università di L'Aquila
State University of New York at Stony Brook
format Article in Journal/Newspaper
author Fiorucci, I.
Muscari, G.
Bianchi, C.
Di Girolamo, P.
Esposito, F.
Grieco, G.
Summa, D.
Bianchini, G.
Palchetti, L.
Cacciani, M.
Di Iorio, T.
Pavese, G.
Cimini, D.
de Zafra, R.
author_facet Fiorucci, I.
Muscari, G.
Bianchi, C.
Di Girolamo, P.
Esposito, F.
Grieco, G.
Summa, D.
Bianchini, G.
Palchetti, L.
Cacciani, M.
Di Iorio, T.
Pavese, G.
Cimini, D.
de Zafra, R.
author_sort Fiorucci, I.
title Measurements of low amounts of precipitable water vapor by millimeter wave spectroscopy: An intercomparison with radiosonde, Raman lidar, and Fourier transform infrared data
title_short Measurements of low amounts of precipitable water vapor by millimeter wave spectroscopy: An intercomparison with radiosonde, Raman lidar, and Fourier transform infrared data
title_full Measurements of low amounts of precipitable water vapor by millimeter wave spectroscopy: An intercomparison with radiosonde, Raman lidar, and Fourier transform infrared data
title_fullStr Measurements of low amounts of precipitable water vapor by millimeter wave spectroscopy: An intercomparison with radiosonde, Raman lidar, and Fourier transform infrared data
title_full_unstemmed Measurements of low amounts of precipitable water vapor by millimeter wave spectroscopy: An intercomparison with radiosonde, Raman lidar, and Fourier transform infrared data
title_sort measurements of low amounts of precipitable water vapor by millimeter wave spectroscopy: an intercomparison with radiosonde, raman lidar, and fourier transform infrared data
publisher American Geophysical Union
publishDate 2008
url http://hdl.handle.net/2122/4000
http://www.agu.org/journals/jd/jd0814/2008JD009831/
https://doi.org/10.1029/2008JD009831
genre Arctic
genre_facet Arctic
op_relation Journal of Geophysical Research
/ 113 (2008)
Bhawar, R., et al. (2008), Spectrally resolved observations of atmospheric emitted radiance in the H2O rotation band, Geophys. Res. Lett., 35, L04812, doi:10.1029/2007GL032207. Bianchini, G., L. Palchetti, and B. Carli (2006), A wide-band nadir-sounding spectroradiometer for the characterization of the Earth’s outgoing long-wave radiation, Proc. SPIE Int. Soc. Opt. Eng., 6361, 63610A. Bianchini, G., L. Palchetti, and A. Baglioni (2007), Far infrared spectrally resolved broadband emission of the atmosphere from Monte Morello and Monte Gomito near Florence, Proc. SPIE Int. Soc. Opt. Eng., 6745, 6745– 6761. Buehler, S. A., P. Eriksson, T. Kuhn, A. von Engeln, and C. Verdes (2005), ARTS, the atmospheric radiative transfer simulator, J. Quant. Spectrosc. Radiat. Transfer, 91, 65– 93, doi:10.1016/j.jqsrt.2004.05.051. Calisse, P. G., M. C. B. Ashley, M. G. Burton, M. A. Phillips, J. W. V. Storey, S. J. E. Radford, and J. B. Peterson (2004), Submillimeter site testing at Dome C, Antarctica, Publ. Astron. Soc. Aust., 21, 1–18, doi:10.1071/AS03018. Carli, B., A. Barbis, J. E. Harries, and L. Palchetti (1999), Design of an efficient broadband far-infrared Fourier-transform spectrometer, Appl. Opt., 38, 3945– 3950, doi:10.1364/AO.38.003945. Cimini, D., E. R. Westwater, A. J. Gasiewski, M. Klein, V. Y. Leuski, and J. C. Liljegren (2007), Ground-based millimeter-and submillimiter-wave observations of low vapor and liquid water contents, IEEE Trans. Geosci. Remote Sens., 45, 2169– 2180, doi:10.1109/TGRS.2007.897450. Clough, S. A., M. J. Iacono, and J.-L. Moncet (1992), Line-by-line calculations of atmospheric fluxes and cooling rates: Application to water vapor, J. Geophys. Res., 97(D14), 15,761–15,785. Clough, S. A., M. W. Shephard, E. J. Mlawer, J. S. Delamere, M. J. Iacono, K. Cady-Pereira, S. Boukabara, and P. D. Brown (2005), Atmospheric radiative transfer modeling: A summary of the AER codes, J. Quant. Spectrosc. Radiat. Transfer, 91, 233–244, doi:10.1016/j.jqsrt.2004.05.058. de Zafra, R. L. (1995), The ground-based measurements of stratospheric trace gases using quantitative millimeter wave emission spectroscopy, in Diagnostic Tools in Atmospheric Physics, Proc. of the Int. Sch. of Phys. ‘‘Enrico Fermi,’’ vol. 124, 23– 54, Soc. It. di Fis., Bologna, Italy. de Zafra, R. L., A. Parrish, P. M. Solomon, and J. W. Barrett (1983), A quasi continuous record of atmospheric opacity at l = 1.1 mm over 34 days at Mauna Kea observatory, Int. J. Infrared Millimeter Waves, 4, 757–765, doi:10.1007/BF01009694. Di Girolamo, P., R. Marchese, D. N. Whiteman, and B. B. Demoz (2004), Rotational Raman lidar measurements of atmospheric temperature in the UV, Geophys. Res. Lett., 31, L01106, doi:10.1029/2003GL018342. Esposito, F., G. Grieco, G. Masiello, G. Pavese, R. Restieri, C. Serio, and V. Cuomo (2007), Intercomparison among line-parameters spectroscopic databases using downwelling spectral radiance, Q. J. R. Meteorol. Soc., 133, 191– 202. Evans, K. F., and G. L. Stephens (1995), Microwave radiative transfer through clouds composed of realistically shaped ice crystals. Part II. Remote sensing of ice clouds, J. Atmos. Sci., 52, 2058 – 2072, doi:10.1175/1520-0469(1995)052<2058:MRTTCC>2.0.CO;2. Han, Y., and E. R. Westwater (2000), Analysis and improvement of tipping calibration for ground-based microwave radiometers, IEEE Trans. Geosci. Remote Sens., 38, 1260– 1277, doi:10.1109/36.843018. Held, I. M., and B. Soden (2000), Water vapor feedback and global warming, Annu. Rev. Energy Environ., 25, 441 –475, doi:10.1146/ annurev.energy.25.1.441. Hewison, T. J., D. Cimini, L. Martin, C. Gaffard, and J. Nash (2006), Validating clear air absorption model using ground-based microwave radiometers and vice-versa, Meteorol. Z., 15(1), 27 – 36, doi:10.1127/ 0941-2948/2006/0097. Hirvensalo, J., J. Wahrn, and H. Jauhiainen (2002), New Vaisala RS92 GPS radiosonde offers high level of performance and GPS wind data availability, paper presented at 12th Symposium on Meteorological Observations and Instrumentation, Am. Meteorol. Soc., Long Beach, Calif. James, F. (1994), Minuit, function minimization and error analysis, reference manual, CERN Program Libr. Long Writeup, D506, Comput. and Networks Div., Eur. Organ. for Nucl. Res., Geneva, Switzerland. Jauhiainen, H., and M. Lehmuskero (2005), Performance of the Vaisala radiosonde RS92-SGP and Vaisala DigiCORA sounding system MW31 in theWMOMauritius radiosonde intercomparison, technical note,Vaisala Oyi, Helsinki. (Available at http://www.vaisala.com/weather/products/ soundingequipment/radiosondes/rs92/mauritiustest) Klein, M., and A. J. Gasieweski (2000), Nadir sensitivity of passive millimeter and submillimeter wave channels to clean air temperature and water vapor variations, J. Geophys. Res., 105(D13), 17,481 – 17,511, doi:10.1029/2000JD900089. Liebe, H. J., and D. H. Layton (1987), Millimeter-wave properties of the atmosphere: Laboratory studies and propagation modeling, NTIA-Rep., 87– 224, Natl. Telecommun. and Inf. Admin., Boulder, Colo. Liebe, H. J., G. A. Hufford, and M. G. Cotton (1993), Propagation modeling of moist air and suspended water/ice particles at frequencies below 1000 GHz, paper 542 presented at AGARD 52nd Specialists’ Meeting of the Electromagnetic Wave Propagation Panel, Advisory Group for Aerospace Res. and Dev., Palma de Mallorca, Spain, 1 – 10 March. Liljegren, J. C., S.-A. Boukabara, K. Cady-Pereira, and S. A. Clough (2005), The effect of the half-width of the 22-GHz water vapor line on retrievals of temperature and water vapor profiles with a 12-channel microwave radiometer, IEEE Trans. Geosci. Remote Sens., 43, 1102 – 1108, doi:10.1109/TGRS.2004.839593. Liou, K. N. (1992), Radiation and Cloud Processes in the Atmosphere, 487 pp., Oxford Univ. Press, New York. Liu, G., and J. A. Curry (1998), Remote sensing of ice water characteristics in tropical clouds using aircraft microwave measurements, J. Appl. Meteorol., 37, 337 – 355, doi:10.1175/1520-0450(1998)037<0337: RSOIWC>2.0.CO;2. Marsden, D., and F. P. J. Valero (2004), Observation of water vapour greenhouse absorption over the Gulf of Mexico using aircraft and satellite data, J. Atmos. Sci., 61, 745 – 753, doi:10.1175/1520-0469(2004)061<0745: OOWVGA>2.0.CO;2. Miloshevich, L. M., A. Paukkunen, H. Vo¨mel, and S. J. Oltmans (2004), Development and validation of a time lag correction for Vaisala radiosonde humidity measurements, J. Atmos. Oceanic Technol., 21, 1305 – 1327, doi:10.1175/1520-0426(2004)021<1305:DAVOAT>2.0.CO;2. Miloshevich, L.M., H.Vo¨mel, D. N.Whiteman, B. M. Lesht, F. J. Schmidlin, and F. Russo (2006), Absolute accuracy of water vapour measurements from six operational radiosonde types launched during AWEX-G and implications for AIRS validation, J. Geophys. Res., 111, D09S10, doi:10.1029/2005JD006083. Muscari, G., A. G. di Sarra, R. L. de Zafra, F. Lucci, F. Baordo, F. Angelini, and G. Fiocco (2007), Middle atmospheric O3, CO, N2O, HNO3, and temperature profiles during the warm Arctic winter 2001– 2002, J. Geophys. Res., 112, D14304, doi:10.1029/2006JD007849. Palchetti, L., C. Belotti, G. Bianchini, F. Castagnoli, B. Carli, U. Cortesi, M. Pellegrini, C. Camy-Peyret, P. Jeseck, and Y. Te´ (2006), First spectral measurement of the Earth’s upwelling emission using an uncooled wideband Fourier transform spectrometer, Atmos. Chem. Phys., 6, 5025– 5030. Palchetti, L., G. Bianchini, F. Castagnoli, B. Carli, C. Serio, F. Esposito, V. Cuomo, R. Rizzi, and T. Maestri (2005), Breadboard of a Fouriertransform spectrometer for the Radiation Explorer in the Far Infrared atmospheric mission, Appl. Opt., 44, 2870 – 2878, doi:10.1364/ AO.44.002870. Parrish, A., R. L. de Zafra, J. W. Barrett, P. Solomon, and B. Connor (1987), Additional atmospheric opacity measurements at l = 1.1 mm from Mauna Kea observatory, Hawaii, Int. J. Infrared Millimeter Waves, 8, 431– 440, doi:10.1007/BF01013256. Parrish, A., R. L. de Zafra, P. M. Solomon, and J. W. Barrett (1988), A ground-based technique for millimeter wave spectroscopic observations of stratospheric trace constituents, Radio Sci., 23, 106– 118, doi:10.1029/ RS023i002p00106. Paukkunen, A., V. Antikainen, and H. Jauhiainen (2001), Accuracy and performance of the new Vaisala RS90 radiosonde in operational use, paper presented at 11th Symposium on Meteorological Observations and Instrumentation, Am. Meteorol. Soc., Albuquerque, N. M., 14–18 Jan. Raval, A., and V. Ramanathan (1989), Observational determination of the greenhouse effect, Nature, 342, 758– 761, doi:10.1038/342758a0. Renbarger, T., J. L. Dotson, and G. Novak (1998), Measurements of submillimeter polarization induced by oblique reflection from aluminum alloy, Appl. Opt., 37, 6643– 6647, doi:10.1364/AO.37.006643. Rosenkranz, P. W. (1998), Water vapor microwave continuum absorption: A comparison of measurements and models, Radio Sci., 33, 919– 928, doi:10.1029/98RS01182. Rosenkranz, P. W. (1999), Correction to ‘‘Water vapor microwave continuum absorption: a comparison of measurements and models’’, Radio Sci., 34, 1025, doi:10.1029/1999RS900020. Rosenkranz, P. W. (2003), Rapid radiative transfer model for AMSU/HSB channels, IEEE Trans. Geosci. Remote Sens., 41, 362– 368, doi:10.1109/ TGRS.2002.808323. Rothman, L. S., et al. (2003), The HITRAN molecular spectroscopic database: Edition of 2000 including updates through 2001, J. Quant. Spectrosc. Radiat. Transfer, 82, 5 – 44, doi:10.1016/S0022-4073(03)00146-8. Rowe, P. M., L. M. Miloshevich, D. D. Turner, and V. P. Walden (2008), Dry bias in Vaisala RS90 radiosonde humidity profiles over Antarctica, J. Atmos. Oceanic Technol., doi:10.1175/2008JTECHA1009.1, in press. Solomon, S., D. Qin, M. Manning, Z. Chen, M. Marquis, K. B. Averyt, M. Tignor, and H. L. Miller (Eds.) (2007), Climate Change 2007: The Physical Science Basis—Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, 996 pp., Cambridge Univ. Press, Cambridge, U.K. Vo¨mel, H., H. Selkirk, L. Miloshevich, J. Valverde-Canossa, J. Valde`s, E. Kyro¨ , R. Kivi, W. Stolz, G. Peng, and J. A. Diaz (2007), Radiation dry bias of the Vaisala RS92 humidity sensor, J. Atmos. Oceanic Technol., 24, 953– 963, doi:10.1175/JTECH2019.1. Wa¨hrn, J., I. Rekikoski, H. Jauhiainen, and J. Hirvensalo (2004), New Vaisala radiosonde RS92: Testing and results from the field, paper presented at Eighth Symposium on Integrated Observing and Assimilation Systems for Atmosphere, Oceans, and Land Surface, Am. Meteorol. Soc., Seattle,Wash. Whiteman, D. N., S. H. Melfi, and R. A. Ferrare (1992), Raman lidar system for the measurement of water vapor and aerosols in the Earth’s atmosphere, Appl. Opt., 31, 3068– 3082. Zammit, C. C., and P. A. R. Ade (1981), Zenith atmospheric attenuation measurements at millimetre and sub-millimetre wavelengths, Nature, 293, 550– 552, doi:10.1038/293550a0.
http://hdl.handle.net/2122/4000
http://www.agu.org/journals/jd/jd0814/2008JD009831/
doi:10.1029/2008JD009831
op_rights restricted
op_doi https://doi.org/10.1029/2008JD009831
https://doi.org/10.1029/2007GL032207
container_title Journal of Geophysical Research
container_volume 113
container_issue D14
_version_ 1766302683193409536
spelling ftingv:oai:www.earth-prints.org:2122/4000 2023-05-15T14:28:31+02:00 Measurements of low amounts of precipitable water vapor by millimeter wave spectroscopy: An intercomparison with radiosonde, Raman lidar, and Fourier transform infrared data Fiorucci, I. Muscari, G. Bianchi, C. Di Girolamo, P. Esposito, F. Grieco, G. Summa, D. Bianchini, G. Palchetti, L. Cacciani, M. Di Iorio, T. Pavese, G. Cimini, D. de Zafra, R. Fiorucci, I.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Roma2, Roma, Italia Muscari, G.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Roma2, Roma, Italia Bianchi, C.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Roma2, Roma, Italia Di Girolamo, P.; Università della Basilicata Esposito, F.; Università della Basilicata Grieco, G.; Università della Basilicata Summa, D.; Università della Basilicata Bianchini, G.; Istituto di Fisica Applicata, CNR Palchetti, L.; Istituto di Fisica Applicata, CNR Cacciani, M.; Università di Roma "La Sapienza" Di Iorio, T.; Università di Roma "La Sapienza" Pavese, G.; Istituto di Metodologie per l'Analisi Ambientale, CNR Cimini, D.; Università di L'Aquila de Zafra, R.; State University of New York at Stony Brook Istituto Nazionale di Geofisica e Vulcanologia, Sezione Roma2, Roma, Italia Università della Basilicata Istituto di Fisica Applicata, CNR Università di Roma "La Sapienza" Istituto di Metodologie per l'Analisi Ambientale, CNR Università di L'Aquila State University of New York at Stony Brook 2008-07 http://hdl.handle.net/2122/4000 http://www.agu.org/journals/jd/jd0814/2008JD009831/ https://doi.org/10.1029/2008JD009831 en eng American Geophysical Union Journal of Geophysical Research / 113 (2008) Bhawar, R., et al. (2008), Spectrally resolved observations of atmospheric emitted radiance in the H2O rotation band, Geophys. Res. Lett., 35, L04812, doi:10.1029/2007GL032207. Bianchini, G., L. Palchetti, and B. Carli (2006), A wide-band nadir-sounding spectroradiometer for the characterization of the Earth’s outgoing long-wave radiation, Proc. SPIE Int. Soc. Opt. Eng., 6361, 63610A. Bianchini, G., L. Palchetti, and A. Baglioni (2007), Far infrared spectrally resolved broadband emission of the atmosphere from Monte Morello and Monte Gomito near Florence, Proc. SPIE Int. Soc. Opt. Eng., 6745, 6745– 6761. Buehler, S. A., P. Eriksson, T. Kuhn, A. von Engeln, and C. Verdes (2005), ARTS, the atmospheric radiative transfer simulator, J. Quant. Spectrosc. Radiat. Transfer, 91, 65– 93, doi:10.1016/j.jqsrt.2004.05.051. Calisse, P. G., M. C. B. Ashley, M. G. Burton, M. A. Phillips, J. W. V. Storey, S. J. E. Radford, and J. B. Peterson (2004), Submillimeter site testing at Dome C, Antarctica, Publ. Astron. Soc. Aust., 21, 1–18, doi:10.1071/AS03018. Carli, B., A. Barbis, J. E. Harries, and L. Palchetti (1999), Design of an efficient broadband far-infrared Fourier-transform spectrometer, Appl. Opt., 38, 3945– 3950, doi:10.1364/AO.38.003945. Cimini, D., E. R. Westwater, A. J. Gasiewski, M. Klein, V. Y. Leuski, and J. C. Liljegren (2007), Ground-based millimeter-and submillimiter-wave observations of low vapor and liquid water contents, IEEE Trans. Geosci. Remote Sens., 45, 2169– 2180, doi:10.1109/TGRS.2007.897450. Clough, S. A., M. J. Iacono, and J.-L. Moncet (1992), Line-by-line calculations of atmospheric fluxes and cooling rates: Application to water vapor, J. Geophys. Res., 97(D14), 15,761–15,785. Clough, S. A., M. W. Shephard, E. J. Mlawer, J. S. Delamere, M. J. Iacono, K. Cady-Pereira, S. Boukabara, and P. D. Brown (2005), Atmospheric radiative transfer modeling: A summary of the AER codes, J. Quant. Spectrosc. Radiat. Transfer, 91, 233–244, doi:10.1016/j.jqsrt.2004.05.058. de Zafra, R. L. (1995), The ground-based measurements of stratospheric trace gases using quantitative millimeter wave emission spectroscopy, in Diagnostic Tools in Atmospheric Physics, Proc. of the Int. Sch. of Phys. ‘‘Enrico Fermi,’’ vol. 124, 23– 54, Soc. It. di Fis., Bologna, Italy. de Zafra, R. L., A. Parrish, P. M. Solomon, and J. W. Barrett (1983), A quasi continuous record of atmospheric opacity at l = 1.1 mm over 34 days at Mauna Kea observatory, Int. J. Infrared Millimeter Waves, 4, 757–765, doi:10.1007/BF01009694. Di Girolamo, P., R. Marchese, D. N. Whiteman, and B. B. Demoz (2004), Rotational Raman lidar measurements of atmospheric temperature in the UV, Geophys. Res. Lett., 31, L01106, doi:10.1029/2003GL018342. Esposito, F., G. Grieco, G. Masiello, G. Pavese, R. Restieri, C. Serio, and V. Cuomo (2007), Intercomparison among line-parameters spectroscopic databases using downwelling spectral radiance, Q. J. R. Meteorol. Soc., 133, 191– 202. Evans, K. F., and G. L. Stephens (1995), Microwave radiative transfer through clouds composed of realistically shaped ice crystals. Part II. Remote sensing of ice clouds, J. Atmos. Sci., 52, 2058 – 2072, doi:10.1175/1520-0469(1995)052<2058:MRTTCC>2.0.CO;2. Han, Y., and E. R. Westwater (2000), Analysis and improvement of tipping calibration for ground-based microwave radiometers, IEEE Trans. Geosci. Remote Sens., 38, 1260– 1277, doi:10.1109/36.843018. Held, I. M., and B. Soden (2000), Water vapor feedback and global warming, Annu. Rev. Energy Environ., 25, 441 –475, doi:10.1146/ annurev.energy.25.1.441. Hewison, T. J., D. Cimini, L. Martin, C. Gaffard, and J. Nash (2006), Validating clear air absorption model using ground-based microwave radiometers and vice-versa, Meteorol. Z., 15(1), 27 – 36, doi:10.1127/ 0941-2948/2006/0097. Hirvensalo, J., J. Wahrn, and H. Jauhiainen (2002), New Vaisala RS92 GPS radiosonde offers high level of performance and GPS wind data availability, paper presented at 12th Symposium on Meteorological Observations and Instrumentation, Am. Meteorol. Soc., Long Beach, Calif. James, F. (1994), Minuit, function minimization and error analysis, reference manual, CERN Program Libr. Long Writeup, D506, Comput. and Networks Div., Eur. Organ. for Nucl. Res., Geneva, Switzerland. Jauhiainen, H., and M. Lehmuskero (2005), Performance of the Vaisala radiosonde RS92-SGP and Vaisala DigiCORA sounding system MW31 in theWMOMauritius radiosonde intercomparison, technical note,Vaisala Oyi, Helsinki. (Available at http://www.vaisala.com/weather/products/ soundingequipment/radiosondes/rs92/mauritiustest) Klein, M., and A. J. Gasieweski (2000), Nadir sensitivity of passive millimeter and submillimeter wave channels to clean air temperature and water vapor variations, J. Geophys. Res., 105(D13), 17,481 – 17,511, doi:10.1029/2000JD900089. Liebe, H. J., and D. H. Layton (1987), Millimeter-wave properties of the atmosphere: Laboratory studies and propagation modeling, NTIA-Rep., 87– 224, Natl. Telecommun. and Inf. Admin., Boulder, Colo. Liebe, H. J., G. A. Hufford, and M. G. Cotton (1993), Propagation modeling of moist air and suspended water/ice particles at frequencies below 1000 GHz, paper 542 presented at AGARD 52nd Specialists’ Meeting of the Electromagnetic Wave Propagation Panel, Advisory Group for Aerospace Res. and Dev., Palma de Mallorca, Spain, 1 – 10 March. Liljegren, J. C., S.-A. Boukabara, K. Cady-Pereira, and S. A. Clough (2005), The effect of the half-width of the 22-GHz water vapor line on retrievals of temperature and water vapor profiles with a 12-channel microwave radiometer, IEEE Trans. Geosci. Remote Sens., 43, 1102 – 1108, doi:10.1109/TGRS.2004.839593. Liou, K. N. (1992), Radiation and Cloud Processes in the Atmosphere, 487 pp., Oxford Univ. Press, New York. Liu, G., and J. A. Curry (1998), Remote sensing of ice water characteristics in tropical clouds using aircraft microwave measurements, J. Appl. Meteorol., 37, 337 – 355, doi:10.1175/1520-0450(1998)037<0337: RSOIWC>2.0.CO;2. Marsden, D., and F. P. J. Valero (2004), Observation of water vapour greenhouse absorption over the Gulf of Mexico using aircraft and satellite data, J. Atmos. Sci., 61, 745 – 753, doi:10.1175/1520-0469(2004)061<0745: OOWVGA>2.0.CO;2. Miloshevich, L. M., A. Paukkunen, H. Vo¨mel, and S. J. Oltmans (2004), Development and validation of a time lag correction for Vaisala radiosonde humidity measurements, J. Atmos. Oceanic Technol., 21, 1305 – 1327, doi:10.1175/1520-0426(2004)021<1305:DAVOAT>2.0.CO;2. Miloshevich, L.M., H.Vo¨mel, D. N.Whiteman, B. M. Lesht, F. J. Schmidlin, and F. Russo (2006), Absolute accuracy of water vapour measurements from six operational radiosonde types launched during AWEX-G and implications for AIRS validation, J. Geophys. Res., 111, D09S10, doi:10.1029/2005JD006083. Muscari, G., A. G. di Sarra, R. L. de Zafra, F. Lucci, F. Baordo, F. Angelini, and G. Fiocco (2007), Middle atmospheric O3, CO, N2O, HNO3, and temperature profiles during the warm Arctic winter 2001– 2002, J. Geophys. Res., 112, D14304, doi:10.1029/2006JD007849. Palchetti, L., C. Belotti, G. Bianchini, F. Castagnoli, B. Carli, U. Cortesi, M. Pellegrini, C. Camy-Peyret, P. Jeseck, and Y. Te´ (2006), First spectral measurement of the Earth’s upwelling emission using an uncooled wideband Fourier transform spectrometer, Atmos. Chem. Phys., 6, 5025– 5030. Palchetti, L., G. Bianchini, F. Castagnoli, B. Carli, C. Serio, F. Esposito, V. Cuomo, R. Rizzi, and T. Maestri (2005), Breadboard of a Fouriertransform spectrometer for the Radiation Explorer in the Far Infrared atmospheric mission, Appl. Opt., 44, 2870 – 2878, doi:10.1364/ AO.44.002870. Parrish, A., R. L. de Zafra, J. W. Barrett, P. Solomon, and B. Connor (1987), Additional atmospheric opacity measurements at l = 1.1 mm from Mauna Kea observatory, Hawaii, Int. J. Infrared Millimeter Waves, 8, 431– 440, doi:10.1007/BF01013256. Parrish, A., R. L. de Zafra, P. M. Solomon, and J. W. Barrett (1988), A ground-based technique for millimeter wave spectroscopic observations of stratospheric trace constituents, Radio Sci., 23, 106– 118, doi:10.1029/ RS023i002p00106. Paukkunen, A., V. Antikainen, and H. Jauhiainen (2001), Accuracy and performance of the new Vaisala RS90 radiosonde in operational use, paper presented at 11th Symposium on Meteorological Observations and Instrumentation, Am. Meteorol. Soc., Albuquerque, N. M., 14–18 Jan. Raval, A., and V. Ramanathan (1989), Observational determination of the greenhouse effect, Nature, 342, 758– 761, doi:10.1038/342758a0. Renbarger, T., J. L. Dotson, and G. Novak (1998), Measurements of submillimeter polarization induced by oblique reflection from aluminum alloy, Appl. Opt., 37, 6643– 6647, doi:10.1364/AO.37.006643. Rosenkranz, P. W. (1998), Water vapor microwave continuum absorption: A comparison of measurements and models, Radio Sci., 33, 919– 928, doi:10.1029/98RS01182. Rosenkranz, P. W. (1999), Correction to ‘‘Water vapor microwave continuum absorption: a comparison of measurements and models’’, Radio Sci., 34, 1025, doi:10.1029/1999RS900020. Rosenkranz, P. W. (2003), Rapid radiative transfer model for AMSU/HSB channels, IEEE Trans. Geosci. Remote Sens., 41, 362– 368, doi:10.1109/ TGRS.2002.808323. Rothman, L. S., et al. (2003), The HITRAN molecular spectroscopic database: Edition of 2000 including updates through 2001, J. Quant. Spectrosc. Radiat. Transfer, 82, 5 – 44, doi:10.1016/S0022-4073(03)00146-8. Rowe, P. M., L. M. Miloshevich, D. D. Turner, and V. P. Walden (2008), Dry bias in Vaisala RS90 radiosonde humidity profiles over Antarctica, J. Atmos. Oceanic Technol., doi:10.1175/2008JTECHA1009.1, in press. Solomon, S., D. Qin, M. Manning, Z. Chen, M. Marquis, K. B. Averyt, M. Tignor, and H. L. Miller (Eds.) (2007), Climate Change 2007: The Physical Science Basis—Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, 996 pp., Cambridge Univ. Press, Cambridge, U.K. Vo¨mel, H., H. Selkirk, L. Miloshevich, J. Valverde-Canossa, J. Valde`s, E. Kyro¨ , R. Kivi, W. Stolz, G. Peng, and J. A. Diaz (2007), Radiation dry bias of the Vaisala RS92 humidity sensor, J. Atmos. Oceanic Technol., 24, 953– 963, doi:10.1175/JTECH2019.1. Wa¨hrn, J., I. Rekikoski, H. Jauhiainen, and J. Hirvensalo (2004), New Vaisala radiosonde RS92: Testing and results from the field, paper presented at Eighth Symposium on Integrated Observing and Assimilation Systems for Atmosphere, Oceans, and Land Surface, Am. Meteorol. Soc., Seattle,Wash. Whiteman, D. N., S. H. Melfi, and R. A. Ferrare (1992), Raman lidar system for the measurement of water vapor and aerosols in the Earth’s atmosphere, Appl. Opt., 31, 3068– 3082. Zammit, C. C., and P. A. R. Ade (1981), Zenith atmospheric attenuation measurements at millimetre and sub-millimetre wavelengths, Nature, 293, 550– 552, doi:10.1038/293550a0. http://hdl.handle.net/2122/4000 http://www.agu.org/journals/jd/jd0814/2008JD009831/ doi:10.1029/2008JD009831 restricted millimeter wave spectroscopy column water vapor 01. Atmosphere::01.01. Atmosphere::01.01.01. Composition and Structure article 2008 ftingv https://doi.org/10.1029/2008JD009831 https://doi.org/10.1029/2007GL032207 2022-07-29T06:04:57Z Observations of very low amounts of precipitable water vapor (PWV) by means of the Ground-Based Millimeter wave Spectrometer (GBMS) are discussed. Low amounts of column water vapor (between 0.5 and 4 mm) are typical of high mountain sites and polar regions, especially during winter, and are difficult to measure accurately because of the lack of sensitivity of conventional instruments to such low PWV contents. The technique used involves the measurement of atmospheric opacity in the range between 230 and 280 GHz with a spectral resolution of 4 GHz, followed by the conversion to precipitable water vapor using a linear relationship. We present the intercomparison of this data set with simultaneous PWV observations obtained with Vaisala RS92k radiosondes, a Raman lidar, and an IR Fourier transform spectrometer. These sets of measurements were carried out during the primary field campaign of the Earth Cooling by Water vapor Radiation (ECOWAR) project which took place at Breuil-Cervinia (45.9N, 7.6E, elevation 1990 m) and Plateau Rosa (45.9N, 7.7E, elevation 3490 m), Italy, from 3 to 16 March 2007. GBMS PWV measurements show a good agreement with the other three data sets exhibiting a mean difference between observations of 9%. The considerable number of data points available for the GBMS versus lidar PWV correlation allows an additional analysis which indicates negligible systematic differences between the two data sets. Published D14314 1.8. Osservazioni di geofisica ambientale JCR Journal reserved Article in Journal/Newspaper Arctic Earth-Prints (Istituto Nazionale di Geofisica e Vulcanologia) Journal of Geophysical Research 113 D14