Spatial and temporal variability of surface mass balance near Talos Dome, East Antarctica

Predictions concerning Antarctica’s contribution to sea level change have been hampered by poor knowledge of surface mass balance. Snow accumulation is the most direct climate indicator and has important implications for paleoclimatic reconstruction from ice cores. Snow accumulation measurements (st...

Full description

Bibliographic Details
Published in:Journal of Geophysical Research
Main Authors: Frezzotti, M., Urbini, S., Proposito, M., Scarchilli, C., Gandolfi, S.
Other Authors: Frezzotti, M.; Ente per le Nuove Tecnologie, l’Energia e l’Ambiente, Rome, Italy, Urbini, S.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Roma2, Roma, Italia, Proposito, M.; Ente per le Nuove Tecnologie, l’Energia e l’Ambiente, Rome, Italy, Scarchilli, C.; Ente per le Nuove Tecnologie, l’Energia e l’Ambiente, Rome, Italy - Dipartimento di Scienze della Terra, University of Siena, Siena, Italy, Gandolfi, S.; Dipartimento di Ingegneria delle Strutture, dei Trasporti, delle Acque, del Rilevamento, del Territorio, University of Bologna, Bologna, Italy, Ente per le Nuove Tecnologie, l’Energia e l’Ambiente, Rome, Italy, Istituto Nazionale di Geofisica e Vulcanologia, Sezione Roma2, Roma, Italia, Ente per le Nuove Tecnologie, l’Energia e l’Ambiente, Rome, Italy - Dipartimento di Scienze della Terra, University of Siena, Siena, Italy, Dipartimento di Ingegneria delle Strutture, dei Trasporti, delle Acque, del Rilevamento, del Territorio, University of Bologna, Bologna, Italy
Format: Article in Journal/Newspaper
Language:English
Published: AGU 2007
Subjects:
Online Access:http://hdl.handle.net/2122/3787
https://doi.org/10.1029/2006JF000638
id ftingv:oai:www.earth-prints.org:2122/3787
record_format openpolar
institution Open Polar
collection Earth-Prints (Istituto Nazionale di Geofisica e Vulcanologia)
op_collection_id ftingv
language English
topic spatial and temporal variability of accumulation
mass balance
Talos Dome
East Antarctica
snow accumulation measurements
snow radar
02. Cryosphere::02.02. Glaciers::02.02.99. General or miscellaneous
02. Cryosphere::02.02. Glaciers::02.02.06. Mass balance
spellingShingle spatial and temporal variability of accumulation
mass balance
Talos Dome
East Antarctica
snow accumulation measurements
snow radar
02. Cryosphere::02.02. Glaciers::02.02.99. General or miscellaneous
02. Cryosphere::02.02. Glaciers::02.02.06. Mass balance
Frezzotti, M.
Urbini, S.
Proposito, M.
Scarchilli, C.
Gandolfi, S.
Spatial and temporal variability of surface mass balance near Talos Dome, East Antarctica
topic_facet spatial and temporal variability of accumulation
mass balance
Talos Dome
East Antarctica
snow accumulation measurements
snow radar
02. Cryosphere::02.02. Glaciers::02.02.99. General or miscellaneous
02. Cryosphere::02.02. Glaciers::02.02.06. Mass balance
description Predictions concerning Antarctica’s contribution to sea level change have been hampered by poor knowledge of surface mass balance. Snow accumulation is the most direct climate indicator and has important implications for paleoclimatic reconstruction from ice cores. Snow accumulation measurements (stake, core, snow radar) taken along a 500-km transect crossing Talos Dome (East Antarctica) have been used to assess accumulation signals and the representativeness of ice core records. Stake readings show that accumulation hiatuses can occur at sites with accumulation rates below 120 kg m 2 yr 1. Differences between cores and stakes can lead to statistical misidentification of annual layers determined from seasonal signals at sites with accumulation rates below 200 kg m 2 yr 1 because of nondetection of higher and lower values. Achieving ±10% accuracy in the reconstruction of snow accumulation from single cores requires high accumulation (750 kg m 2 yr 1). Low-accumulation sites are representative if cumulative rates computed over several years are used to reach the 750 kg m 2 yr 1 threshold. Temporal variability of accumulation over the last two centuries shows no significant increase in accumulation. Wind-driven processes are a fundamental component of surface mass balance. Spatial variations in accumulation are well correlated with surface slope changes along the wind direction and may exceed 200 kg m 2 yr 1 within 1 km. Wind-driven sublimation rates are less than 50 kg m 2 yr 1 in plateau areas and up to 260 kg m 2 yr 1 in slope areas and account for 20–75% of precipitation, whereas depositional features are negligible in surface mass balance. Published F02032 3.8. Geofisica per l'ambiente JCR Journal reserved
author2 Frezzotti, M.; Ente per le Nuove Tecnologie, l’Energia e l’Ambiente, Rome, Italy
Urbini, S.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Roma2, Roma, Italia
Proposito, M.; Ente per le Nuove Tecnologie, l’Energia e l’Ambiente, Rome, Italy
Scarchilli, C.; Ente per le Nuove Tecnologie, l’Energia e l’Ambiente, Rome, Italy - Dipartimento di Scienze della Terra, University of Siena, Siena, Italy
Gandolfi, S.; Dipartimento di Ingegneria delle Strutture, dei Trasporti, delle Acque, del Rilevamento, del Territorio, University of Bologna, Bologna, Italy
Ente per le Nuove Tecnologie, l’Energia e l’Ambiente, Rome, Italy
Istituto Nazionale di Geofisica e Vulcanologia, Sezione Roma2, Roma, Italia
Ente per le Nuove Tecnologie, l’Energia e l’Ambiente, Rome, Italy - Dipartimento di Scienze della Terra, University of Siena, Siena, Italy
Dipartimento di Ingegneria delle Strutture, dei Trasporti, delle Acque, del Rilevamento, del Territorio, University of Bologna, Bologna, Italy
format Article in Journal/Newspaper
author Frezzotti, M.
Urbini, S.
Proposito, M.
Scarchilli, C.
Gandolfi, S.
author_facet Frezzotti, M.
Urbini, S.
Proposito, M.
Scarchilli, C.
Gandolfi, S.
author_sort Frezzotti, M.
title Spatial and temporal variability of surface mass balance near Talos Dome, East Antarctica
title_short Spatial and temporal variability of surface mass balance near Talos Dome, East Antarctica
title_full Spatial and temporal variability of surface mass balance near Talos Dome, East Antarctica
title_fullStr Spatial and temporal variability of surface mass balance near Talos Dome, East Antarctica
title_full_unstemmed Spatial and temporal variability of surface mass balance near Talos Dome, East Antarctica
title_sort spatial and temporal variability of surface mass balance near talos dome, east antarctica
publisher AGU
publishDate 2007
url http://hdl.handle.net/2122/3787
https://doi.org/10.1029/2006JF000638
long_lat ENVELOPE(158.000,158.000,-73.000,-73.000)
geographic East Antarctica
Talos Dome
geographic_facet East Antarctica
Talos Dome
genre Antarc*
Antarctica
East Antarctica
ice core
genre_facet Antarc*
Antarctica
East Antarctica
ice core
op_relation Journal of Geophysical Research
/ 112 (2007)
http://hdl.handle.net/2122/2610
Arcone, S. A., V. B. Spikes, G. S. Hamilton, and P. A. Mayewski (2004), Stratigraphic continuity in 400-MHz short-pulse radar profiles of firn in West Antarctica, Ann. Glaciol., 39, 195– 200. Barnes, P. R. F., E. W. Wolff, and R. Mulvaney (2006), A 44 kyr paleoroughness record of the Antarctic surface, J. Geophys. Res., 111, D03102, doi:10.1029/2005JD006349. Becagli, S., et al. (2004), Chemical and isotopic snow variability in East Antarctica along the 2001/02 ITASE traverse, Ann. Glaciol., 39, 473– 482. Bintanja, R. (1998), The contribution of snowdrift sublimation to the surface mass balance of Antarctica, Ann. Glaciol., 27, 251–259. Black, H. P., and W. Budd (1964), Accumulation in the region of Wilkes, Wilkes Land, Antarctica, J. Glaciol., 5(37), 3 – 15. Cullather, R. I., D. H. Bromwich, and M. L. Van Woert (1998), Spatial and temporal variability of Antarctic precipitation from atmospheric methods, J. Clim., 11, 334–367. De´ry, S. J., and M. K. Yau (2002), Large-scale mass balance effects of blowing snow and surface sublimation, J. Geophys. Res., 107(D23), 4679, doi:10.1029/2001JD001251. Dibb, J. E., and M. Fahnestock (2004), Snow accumulation, surface height change, and firn densification at Summit, Greenland: Insights from 2 years of in situ observation, J. Geophys. Res., 109, D24113, doi:10.1029/2003JD004300. Eisen, O., U. Nixdorf, F. Wilhelms, and H. Miller (2004), Age estimates of isochronous reflection horizons by combining ice core survey, and synthetic radar data, J. Geophys. Res., 109, B04106, doi:10.1029/ 2003JB002858. Fischer, H., and D. Wagenbach (1996), Large-scale spatial trends in recent firn chemistry along an east-west transect through central Greenland, Atmos. Environ., 30, 3227– 3238. Fisher, D. A., N. Reeh, and H. B. Clausen (1985), Stratigraphic noise in time series derived from ice cores, Ann. Glaciol., 7, 76–83. Folco, L., A. Capra, M. Chiappini, M. Frezzotti, M. Mellini, and I. E. Tabacco (2002), The Frontier Mountain meteorite trap (Antarctica), Meteorit. Planet. Sci., 37, 209–228. Fortuin, J. P. F., and J. Oerlemans (1990), The parameterization of the annual surface temperature and mass balance of Antarctica, Ann. Glaciol., 14, 78– 84. Frezzotti, M., and O. Flora (2002), Ice dynamics and climatic surface parameters in East Antarctica from Terra Nova Bay to Talos Dome and Dome C: ITASE Italian Traverses, Terra Antart., 9(1), 47–54. Frezzotti, M., S. Gandolfi, and S. Urbini (2002a), Snow megadune in Antarctica: Sedimentary structure and genesis, J. Geophys. Res., 107(D18), 4344, doi:10.1029/2001JD000673. Frezzotti, M., S. Gandolfi, F. La Marca, and S. Urbini (2002b), Snow dune and glazed surface in Antarctica: New field and remote sensing data, Ann. Glaciol., 34, 81– 88. Frezzotti, M., et al. (2004a), Geophysical survey at Talos Dome (East Antarctica): The search for a new deep-drilling site, Ann. Glaciol., 39, 423– 432. Frezzotti, M., et al. (2004b), New estimations of precipitation and surface sublimation in East Antarctica from snow accumulation measurements, Clim. Dyn., 23(7– 8), doi:10.1007/s00382-004-0462-5. Frezzotti, M., et al. (2005), Spatial and temporal variability of snow accumulation in East Antarctica from traverse data, J. Glaciol., 51(207), 113– 124. Galle´e, H. (1998), Simulation of blowing snow over the Antarctic ice sheet, Ann. Glaciol., 26, 203– 206. Galle´e, H., G. Guyomarch, and E. Brun (2001), Impact of snow drift on the Antarctic Ice Sheet surface mass balance: Possible sensitivity to snowsurface properties, Boundary Layer Meteorol., 99, 1 –19. Galle´e, H., V. Peyaud, and I. Goodwin (2005), Simulation of the net snow accumulation along the Wilkes Land transect, Antarctica, with a regional climate model, Ann. Glaciol., 41, 17– 22. Gandolfi, S., M. Milano, and L. Gusella (2005), Precise Point Positioning: Studio sulle accuratezze e precisioni ottenibili, ed applicabilita` dell’approccio, Boll. Geod. Sci. Affini, 4, 227– 253. Genthon, C., and G. Krinner (2001), The Antarctic surface mass balance and systematic biases in GCMs, J. Geophys. Res., 106, 20,653– 20,664. Giovinetto, M. B., N. M. Waters, and C. R. Bentley (1990), Dependence of Antarctic surface mass balance on temperature, elevation, and distance to open ocean, J. Geophys. Res., 95(D4), 3517– 3531. Goodwin, I. D. (1991), Snow-accumulation variability from seasonal surface observations and firn-core stratigraphy, eastern Wilkes Land, Antarctica, J. Glaciol., 37(127), 383– 387. Goodwin, I. D., H. De Angelis, M. Pook, and N. W. Young (2003), Snow accumulation variability in Wilkes Land, East Antarctica and the relationship to atmospheric ridging in the 130 – 170 E region since 1930, J. Geophys. Res., 108(D21), 4673, doi:10.1029/2002JD002995. Gow, A. J. (1965), On the accumulation and seasonal stratification of snow at the South Pole, J. Glaciol., 5, 467–477. ISMASS Commitee (2004), Recommendations for the collection and synthesis of Antarctic Ice Sheet mass balance data, Global Planet. Change, 42(1–4), 1 –15. Krinner, G., O. Magand, I. Simmonds, G. Genthon, and J. L. Dufresne (2006), Simulated Antarctic precipitation and surface mass balance at the end of the twentieth and twenty-first centuries, Clim. Dyn., doi:10.1007/s00382-006-0177-x2006. Lorius, C. (1983), Accumulation rate measurements on cold polar glaciers, in The Climatic Record in Polar Ice Sheets, edited by G. Q. de Robin, pp. 65– 70, Cambridge Univ. Press, New York. Magand, O., M. Frezzotti, M. Pourchet, B. Stenni, L. Genoni, and M. Fily (2004), Climate variability along latitudinal and longitudinal transects in East Antarctica, Ann. Glaciol., 39, 351– 358. Mancini, M., and M. Frezzotti (2003), Surface wind Field along IT-ITASE traverse (East Antarctica), Terra Antart. Rep., 8, 57–59. Mayewski, P. A., and I. D. Goodwin (1999), Antarctic’s role pursued in global climate change, Eos Trans. AGU, 80, 398– 400. McConnell, J. R., R. C. Bales, and D. R. Davis (1997), Recent intra-annual snow accumulation at South Pole: Implications for ice core interpretation, J. Geophys. Res., 102(D18), 21,947–21,954. Monaghan, A. J., et al. (2006), Insignificant change in Antarctic snowfall since the international geophysical year, Science, 313, 827– 831. Morgan, V., I. Goodwin, D. Etheridge, and C. Wookey (1991), Evidence from Antarctic ice cores for recent increases in snow accumulation, Nature, 354, 58–60. Mosley-Thompson, E., L. G. Thompson, J. F. Paskievitch, M. Pourchet, A. J. Gow, M. E. Davis, and J. Kleinman (1995), Recent increase in South Pole snow accumulation, Ann. Glaciol., 21, 131– 138. Muszynski, I., and G. E. Birchfield (1985), The dependence of Antarctic accumulation rates on surface temperature and elevation, Tellus, 37A, 204–208. Negusini, M., F. Mancini, S. Gandolfi, and A. Capra (2005), Terra Nova Bay GPS permanent station (Antarctica): data quality and first attempt in the evaluation of regional displacement, J. Geodyn., 39, 81– 90. Neilan, R. E. J. F. Zumberge G. Beutler and J. Kouba (1997), The International GPS Service: A Global Resource for GPS Applications and Research. Proceedings of the ION GPS-97, Kansas City, Missouri. Noone, D., J. Turner, and R. Mulvaney (1999), Atmospheric signals and characteristics of accumulation in Dronning Maud Land, Antarctica, J. Geophys. Res., 104(D16), 19,191– 19,211. Paillard, D., L. Labeyrie, and P. Yiou (1996), Macintosh program performs time-series analysis, Eos Trans. AGU, 77, 379. Palais, J. M., I. M. Whillans, and C. Bull (1982), Snow stratigraphic studies at Dome C, East Antarctica: An investigation of depositional and diagenetic processes, Ann. Glaciol., 3, 239– 242. Paris, T. R., and D. H. Bromwich (1991), Continental scale of the Antarctic katabatic wind regime, J. Clim., 4(2), 135– 146. Petit, J. R., J. Jouzel, M. Pourchet, and L. Merlivat (1982), A detailed study of snow accumulation and stable isotope content in Dome C (Antarctica), J. Geophys. Res., 87(C6), 4301–4308. Re´my, F., P. Shaeffer, and B. Legresy (1999), Ice flow physical processes derived from ERS-1 high-resolution map of the Antarctica and Greenland ice sheet, Geophys. J. Int., 139, 645– 656. Richardson, C., E. Aarholt, S.-E. Hamran, P. Holmlund, and E. Isaksson (1997), Spatial distribution of snow in western Dronning Maud Land, East Antarctica, mapped by a ground-based snow radar, J. Geophys. Res., 102(B9), 20,343– 20,354. Spikes, V. B., S. Arcone, G. Hamilton, P. Mayewski, D. Dixon, and S. Kaspari (2004), Spatial and temporal variability in West Antarctic snow accumulation rates, Ann. Glaciol., 39, 238– 244. Stearns, C. R. and G. A. Weidner (1993), Sensible and Latent Heat Flux Estimates in Antarctic, in Antarctic Meteorology and Climatology: Studies Based on Automatic Weather Stations, Antarctic Res. Ser., vol. 61, edited by D. H. Bromwich and C. R. Stearns pp. 109 – 138, AGU, Washington, D. C. Stenni, B., M. Proposito, R. Gragnani, O. Flora, J. Jouzel, S. Falourd, and M. Frezzotti (2002), Eight centuries of volcanic signal and climate change at Talos Dome (East Antarctica), J. Geophys. Res., 107(D9), 4076, doi:10.1029/2000JD000317. Turner, J., S. R. Colwell, G. J. Marshall, T. A. Lachlan-Cope, A. M. Carleton, P. D. Jones, V. Lagun, P. A. Reid, and S. Lagovkina (2005), Antarctic climate change during the last 50 years, Int. J. Climatol, 25, 279– 294. van den Broeke, M. R. (1997), Spatial and temporal variation of sublimation on Antarctica: Results of a high-resolution general circulation model, J. Geophys. Res., 102(D25), 29,765 – 29,778, doi:10.1029/ 97JD01862. van den Broeke, M. R., C. H. Reijmer, and R. S. W. can de Wal (2004), A study of the surface mass balance in Dronning Maud Land, Antarctica, using automatic weather stations, J. Glaciol., 50(171), 565–582. van der Veen, C. J., E. Mosley-Thompson, A. J. Gow, and B. G. Mark (1999a), Accumulation at South Pole: Comparison of two 900-year records, J. Geophys. Res., 104(D24), 31,067– 31,076. van der Veen, C. J., I. M. Whillans, and A. J. Gow (1999b), On the frequency distribution of net annual snow accumulation at the South Pole, Geophys. Res. Lett., 26(2), 239– 242. Vaughan, D. G., H. J. F. Corr, C. S. M. Doake, and E. D. Waddington (1999), Distortion of isochronous layers in ice revealed by ground-penetrating radar, Nature, 398(6725), 323–326. Vittuari, L., C. Vincent, M. Frezzotti, F. Mancini, S. Gandolfi, G. Bitelli, and A. Capra (2004), Space geodesy as a tool for measuring ice surface velocity in the Dome C region and along the ITASE traverse, Ann. Glaciol., 39, 402– 408. Zumberge, J. F., M. B. Helfin, D. C. Jefferson, M. M. Watkins, and F. H. Webb (1997), Precise point positioning for the efficient and robust analysis of GPS data from large networks, J. Geophys. Res., 102(B3), 5005– 5018.
http://hdl.handle.net/2122/3787
doi:10.1029/2006JF000638
op_rights restricted
op_doi https://doi.org/10.1029/2006JF000638
https://doi.org/10.1029/2005JD006349
container_title Journal of Geophysical Research
container_volume 112
container_issue F2
_version_ 1766255656275279872
spelling ftingv:oai:www.earth-prints.org:2122/3787 2023-05-15T13:51:39+02:00 Spatial and temporal variability of surface mass balance near Talos Dome, East Antarctica Frezzotti, M. Urbini, S. Proposito, M. Scarchilli, C. Gandolfi, S. Frezzotti, M.; Ente per le Nuove Tecnologie, l’Energia e l’Ambiente, Rome, Italy Urbini, S.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Roma2, Roma, Italia Proposito, M.; Ente per le Nuove Tecnologie, l’Energia e l’Ambiente, Rome, Italy Scarchilli, C.; Ente per le Nuove Tecnologie, l’Energia e l’Ambiente, Rome, Italy - Dipartimento di Scienze della Terra, University of Siena, Siena, Italy Gandolfi, S.; Dipartimento di Ingegneria delle Strutture, dei Trasporti, delle Acque, del Rilevamento, del Territorio, University of Bologna, Bologna, Italy Ente per le Nuove Tecnologie, l’Energia e l’Ambiente, Rome, Italy Istituto Nazionale di Geofisica e Vulcanologia, Sezione Roma2, Roma, Italia Ente per le Nuove Tecnologie, l’Energia e l’Ambiente, Rome, Italy - Dipartimento di Scienze della Terra, University of Siena, Siena, Italy Dipartimento di Ingegneria delle Strutture, dei Trasporti, delle Acque, del Rilevamento, del Territorio, University of Bologna, Bologna, Italy 2007 http://hdl.handle.net/2122/3787 https://doi.org/10.1029/2006JF000638 en eng AGU Journal of Geophysical Research / 112 (2007) http://hdl.handle.net/2122/2610 Arcone, S. A., V. B. Spikes, G. S. Hamilton, and P. A. Mayewski (2004), Stratigraphic continuity in 400-MHz short-pulse radar profiles of firn in West Antarctica, Ann. Glaciol., 39, 195– 200. Barnes, P. R. F., E. W. Wolff, and R. Mulvaney (2006), A 44 kyr paleoroughness record of the Antarctic surface, J. Geophys. Res., 111, D03102, doi:10.1029/2005JD006349. Becagli, S., et al. (2004), Chemical and isotopic snow variability in East Antarctica along the 2001/02 ITASE traverse, Ann. Glaciol., 39, 473– 482. Bintanja, R. (1998), The contribution of snowdrift sublimation to the surface mass balance of Antarctica, Ann. Glaciol., 27, 251–259. Black, H. P., and W. Budd (1964), Accumulation in the region of Wilkes, Wilkes Land, Antarctica, J. Glaciol., 5(37), 3 – 15. Cullather, R. I., D. H. Bromwich, and M. L. Van Woert (1998), Spatial and temporal variability of Antarctic precipitation from atmospheric methods, J. Clim., 11, 334–367. De´ry, S. J., and M. K. Yau (2002), Large-scale mass balance effects of blowing snow and surface sublimation, J. Geophys. Res., 107(D23), 4679, doi:10.1029/2001JD001251. Dibb, J. E., and M. Fahnestock (2004), Snow accumulation, surface height change, and firn densification at Summit, Greenland: Insights from 2 years of in situ observation, J. Geophys. Res., 109, D24113, doi:10.1029/2003JD004300. Eisen, O., U. Nixdorf, F. Wilhelms, and H. Miller (2004), Age estimates of isochronous reflection horizons by combining ice core survey, and synthetic radar data, J. Geophys. Res., 109, B04106, doi:10.1029/ 2003JB002858. Fischer, H., and D. Wagenbach (1996), Large-scale spatial trends in recent firn chemistry along an east-west transect through central Greenland, Atmos. Environ., 30, 3227– 3238. Fisher, D. A., N. Reeh, and H. B. Clausen (1985), Stratigraphic noise in time series derived from ice cores, Ann. Glaciol., 7, 76–83. Folco, L., A. Capra, M. Chiappini, M. Frezzotti, M. Mellini, and I. E. Tabacco (2002), The Frontier Mountain meteorite trap (Antarctica), Meteorit. Planet. Sci., 37, 209–228. Fortuin, J. P. F., and J. Oerlemans (1990), The parameterization of the annual surface temperature and mass balance of Antarctica, Ann. Glaciol., 14, 78– 84. Frezzotti, M., and O. Flora (2002), Ice dynamics and climatic surface parameters in East Antarctica from Terra Nova Bay to Talos Dome and Dome C: ITASE Italian Traverses, Terra Antart., 9(1), 47–54. Frezzotti, M., S. Gandolfi, and S. Urbini (2002a), Snow megadune in Antarctica: Sedimentary structure and genesis, J. Geophys. Res., 107(D18), 4344, doi:10.1029/2001JD000673. Frezzotti, M., S. Gandolfi, F. La Marca, and S. Urbini (2002b), Snow dune and glazed surface in Antarctica: New field and remote sensing data, Ann. Glaciol., 34, 81– 88. Frezzotti, M., et al. (2004a), Geophysical survey at Talos Dome (East Antarctica): The search for a new deep-drilling site, Ann. Glaciol., 39, 423– 432. Frezzotti, M., et al. (2004b), New estimations of precipitation and surface sublimation in East Antarctica from snow accumulation measurements, Clim. Dyn., 23(7– 8), doi:10.1007/s00382-004-0462-5. Frezzotti, M., et al. (2005), Spatial and temporal variability of snow accumulation in East Antarctica from traverse data, J. Glaciol., 51(207), 113– 124. Galle´e, H. (1998), Simulation of blowing snow over the Antarctic ice sheet, Ann. Glaciol., 26, 203– 206. Galle´e, H., G. Guyomarch, and E. Brun (2001), Impact of snow drift on the Antarctic Ice Sheet surface mass balance: Possible sensitivity to snowsurface properties, Boundary Layer Meteorol., 99, 1 –19. Galle´e, H., V. Peyaud, and I. Goodwin (2005), Simulation of the net snow accumulation along the Wilkes Land transect, Antarctica, with a regional climate model, Ann. Glaciol., 41, 17– 22. Gandolfi, S., M. Milano, and L. Gusella (2005), Precise Point Positioning: Studio sulle accuratezze e precisioni ottenibili, ed applicabilita` dell’approccio, Boll. Geod. Sci. Affini, 4, 227– 253. Genthon, C., and G. Krinner (2001), The Antarctic surface mass balance and systematic biases in GCMs, J. Geophys. Res., 106, 20,653– 20,664. Giovinetto, M. B., N. M. Waters, and C. R. Bentley (1990), Dependence of Antarctic surface mass balance on temperature, elevation, and distance to open ocean, J. Geophys. Res., 95(D4), 3517– 3531. Goodwin, I. D. (1991), Snow-accumulation variability from seasonal surface observations and firn-core stratigraphy, eastern Wilkes Land, Antarctica, J. Glaciol., 37(127), 383– 387. Goodwin, I. D., H. De Angelis, M. Pook, and N. W. Young (2003), Snow accumulation variability in Wilkes Land, East Antarctica and the relationship to atmospheric ridging in the 130 – 170 E region since 1930, J. Geophys. Res., 108(D21), 4673, doi:10.1029/2002JD002995. Gow, A. J. (1965), On the accumulation and seasonal stratification of snow at the South Pole, J. Glaciol., 5, 467–477. ISMASS Commitee (2004), Recommendations for the collection and synthesis of Antarctic Ice Sheet mass balance data, Global Planet. Change, 42(1–4), 1 –15. Krinner, G., O. Magand, I. Simmonds, G. Genthon, and J. L. Dufresne (2006), Simulated Antarctic precipitation and surface mass balance at the end of the twentieth and twenty-first centuries, Clim. Dyn., doi:10.1007/s00382-006-0177-x2006. Lorius, C. (1983), Accumulation rate measurements on cold polar glaciers, in The Climatic Record in Polar Ice Sheets, edited by G. Q. de Robin, pp. 65– 70, Cambridge Univ. Press, New York. Magand, O., M. Frezzotti, M. Pourchet, B. Stenni, L. Genoni, and M. Fily (2004), Climate variability along latitudinal and longitudinal transects in East Antarctica, Ann. Glaciol., 39, 351– 358. Mancini, M., and M. Frezzotti (2003), Surface wind Field along IT-ITASE traverse (East Antarctica), Terra Antart. Rep., 8, 57–59. Mayewski, P. A., and I. D. Goodwin (1999), Antarctic’s role pursued in global climate change, Eos Trans. AGU, 80, 398– 400. McConnell, J. R., R. C. Bales, and D. R. Davis (1997), Recent intra-annual snow accumulation at South Pole: Implications for ice core interpretation, J. Geophys. Res., 102(D18), 21,947–21,954. Monaghan, A. J., et al. (2006), Insignificant change in Antarctic snowfall since the international geophysical year, Science, 313, 827– 831. Morgan, V., I. Goodwin, D. Etheridge, and C. Wookey (1991), Evidence from Antarctic ice cores for recent increases in snow accumulation, Nature, 354, 58–60. Mosley-Thompson, E., L. G. Thompson, J. F. Paskievitch, M. Pourchet, A. J. Gow, M. E. Davis, and J. Kleinman (1995), Recent increase in South Pole snow accumulation, Ann. Glaciol., 21, 131– 138. Muszynski, I., and G. E. Birchfield (1985), The dependence of Antarctic accumulation rates on surface temperature and elevation, Tellus, 37A, 204–208. Negusini, M., F. Mancini, S. Gandolfi, and A. Capra (2005), Terra Nova Bay GPS permanent station (Antarctica): data quality and first attempt in the evaluation of regional displacement, J. Geodyn., 39, 81– 90. Neilan, R. E. J. F. Zumberge G. Beutler and J. Kouba (1997), The International GPS Service: A Global Resource for GPS Applications and Research. Proceedings of the ION GPS-97, Kansas City, Missouri. Noone, D., J. Turner, and R. Mulvaney (1999), Atmospheric signals and characteristics of accumulation in Dronning Maud Land, Antarctica, J. Geophys. Res., 104(D16), 19,191– 19,211. Paillard, D., L. Labeyrie, and P. Yiou (1996), Macintosh program performs time-series analysis, Eos Trans. AGU, 77, 379. Palais, J. M., I. M. Whillans, and C. Bull (1982), Snow stratigraphic studies at Dome C, East Antarctica: An investigation of depositional and diagenetic processes, Ann. Glaciol., 3, 239– 242. Paris, T. R., and D. H. Bromwich (1991), Continental scale of the Antarctic katabatic wind regime, J. Clim., 4(2), 135– 146. Petit, J. R., J. Jouzel, M. Pourchet, and L. Merlivat (1982), A detailed study of snow accumulation and stable isotope content in Dome C (Antarctica), J. Geophys. Res., 87(C6), 4301–4308. Re´my, F., P. Shaeffer, and B. Legresy (1999), Ice flow physical processes derived from ERS-1 high-resolution map of the Antarctica and Greenland ice sheet, Geophys. J. Int., 139, 645– 656. Richardson, C., E. Aarholt, S.-E. Hamran, P. Holmlund, and E. Isaksson (1997), Spatial distribution of snow in western Dronning Maud Land, East Antarctica, mapped by a ground-based snow radar, J. Geophys. Res., 102(B9), 20,343– 20,354. Spikes, V. B., S. Arcone, G. Hamilton, P. Mayewski, D. Dixon, and S. Kaspari (2004), Spatial and temporal variability in West Antarctic snow accumulation rates, Ann. Glaciol., 39, 238– 244. Stearns, C. R. and G. A. Weidner (1993), Sensible and Latent Heat Flux Estimates in Antarctic, in Antarctic Meteorology and Climatology: Studies Based on Automatic Weather Stations, Antarctic Res. Ser., vol. 61, edited by D. H. Bromwich and C. R. Stearns pp. 109 – 138, AGU, Washington, D. C. Stenni, B., M. Proposito, R. Gragnani, O. Flora, J. Jouzel, S. Falourd, and M. Frezzotti (2002), Eight centuries of volcanic signal and climate change at Talos Dome (East Antarctica), J. Geophys. Res., 107(D9), 4076, doi:10.1029/2000JD000317. Turner, J., S. R. Colwell, G. J. Marshall, T. A. Lachlan-Cope, A. M. Carleton, P. D. Jones, V. Lagun, P. A. Reid, and S. Lagovkina (2005), Antarctic climate change during the last 50 years, Int. J. Climatol, 25, 279– 294. van den Broeke, M. R. (1997), Spatial and temporal variation of sublimation on Antarctica: Results of a high-resolution general circulation model, J. Geophys. Res., 102(D25), 29,765 – 29,778, doi:10.1029/ 97JD01862. van den Broeke, M. R., C. H. Reijmer, and R. S. W. can de Wal (2004), A study of the surface mass balance in Dronning Maud Land, Antarctica, using automatic weather stations, J. Glaciol., 50(171), 565–582. van der Veen, C. J., E. Mosley-Thompson, A. J. Gow, and B. G. Mark (1999a), Accumulation at South Pole: Comparison of two 900-year records, J. Geophys. Res., 104(D24), 31,067– 31,076. van der Veen, C. J., I. M. Whillans, and A. J. Gow (1999b), On the frequency distribution of net annual snow accumulation at the South Pole, Geophys. Res. Lett., 26(2), 239– 242. Vaughan, D. G., H. J. F. Corr, C. S. M. Doake, and E. D. Waddington (1999), Distortion of isochronous layers in ice revealed by ground-penetrating radar, Nature, 398(6725), 323–326. Vittuari, L., C. Vincent, M. Frezzotti, F. Mancini, S. Gandolfi, G. Bitelli, and A. Capra (2004), Space geodesy as a tool for measuring ice surface velocity in the Dome C region and along the ITASE traverse, Ann. Glaciol., 39, 402– 408. Zumberge, J. F., M. B. Helfin, D. C. Jefferson, M. M. Watkins, and F. H. Webb (1997), Precise point positioning for the efficient and robust analysis of GPS data from large networks, J. Geophys. Res., 102(B3), 5005– 5018. http://hdl.handle.net/2122/3787 doi:10.1029/2006JF000638 restricted spatial and temporal variability of accumulation mass balance Talos Dome East Antarctica snow accumulation measurements snow radar 02. Cryosphere::02.02. Glaciers::02.02.99. General or miscellaneous 02. Cryosphere::02.02. Glaciers::02.02.06. Mass balance article 2007 ftingv https://doi.org/10.1029/2006JF000638 https://doi.org/10.1029/2005JD006349 2022-07-29T06:04:53Z Predictions concerning Antarctica’s contribution to sea level change have been hampered by poor knowledge of surface mass balance. Snow accumulation is the most direct climate indicator and has important implications for paleoclimatic reconstruction from ice cores. Snow accumulation measurements (stake, core, snow radar) taken along a 500-km transect crossing Talos Dome (East Antarctica) have been used to assess accumulation signals and the representativeness of ice core records. Stake readings show that accumulation hiatuses can occur at sites with accumulation rates below 120 kg m 2 yr 1. Differences between cores and stakes can lead to statistical misidentification of annual layers determined from seasonal signals at sites with accumulation rates below 200 kg m 2 yr 1 because of nondetection of higher and lower values. Achieving ±10% accuracy in the reconstruction of snow accumulation from single cores requires high accumulation (750 kg m 2 yr 1). Low-accumulation sites are representative if cumulative rates computed over several years are used to reach the 750 kg m 2 yr 1 threshold. Temporal variability of accumulation over the last two centuries shows no significant increase in accumulation. Wind-driven processes are a fundamental component of surface mass balance. Spatial variations in accumulation are well correlated with surface slope changes along the wind direction and may exceed 200 kg m 2 yr 1 within 1 km. Wind-driven sublimation rates are less than 50 kg m 2 yr 1 in plateau areas and up to 260 kg m 2 yr 1 in slope areas and account for 20–75% of precipitation, whereas depositional features are negligible in surface mass balance. Published F02032 3.8. Geofisica per l'ambiente JCR Journal reserved Article in Journal/Newspaper Antarc* Antarctica East Antarctica ice core Earth-Prints (Istituto Nazionale di Geofisica e Vulcanologia) East Antarctica Talos Dome ENVELOPE(158.000,158.000,-73.000,-73.000) Journal of Geophysical Research 112 F2