Metasomatism induced by alkaline magma in the upper mantle of northern Victoria Land (Antarctica): an experimental approach

Magma generation in the Ross Sea system is related to partial melting of strongly metasomatised mantle sources where amphibole most probably plays a crucial role. In this context, metasomatism induced by a mela-nephelinite melt in lithospheric mantle of the Mt. Melbourne Volcanic Province (northern...

Full description

Bibliographic Details
Published in:Geological Society, London, Special Publications
Main Authors: Perinelli, C., Orlando, A., Conte, A. M., Armienti, P., Borrini, D., Faccini, B., Misiti, V.
Other Authors: Perinelli, C.; università di pisa, Orlando, A.; CNR IGG Firenze, Conte, A. M.; CNR IGG Roma, Armienti, P.; università di pisa, Borrini, D.; Università Firenze, Faccini, B.; Università Firenze, Misiti, V.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Roma1, Roma, Italia, università di pisa, CNR IGG Firenze, CNR IGG Roma, Università Firenze, Istituto Nazionale di Geofisica e Vulcanologia, Sezione Roma1, Roma, Italia
Format: Article in Journal/Newspaper
Language:English
Published: Geological Society, London 2008
Subjects:
Online Access:http://hdl.handle.net/2122/3734
http://sp.lyellcollection.org/cgi/content/abstract/293/1/279
https://doi.org/10.1144/SP293.13
id ftingv:oai:www.earth-prints.org:2122/3734
record_format openpolar
institution Open Polar
collection Earth-Prints (Istituto Nazionale di Geofisica e Vulcanologia)
op_collection_id ftingv
language English
topic Mantle
metasomatism
lherzolite
wehrlite
melt-rock reaction experiments
04. Solid Earth::04.04. Geology::04.04.05. Mineralogy and petrology
spellingShingle Mantle
metasomatism
lherzolite
wehrlite
melt-rock reaction experiments
04. Solid Earth::04.04. Geology::04.04.05. Mineralogy and petrology
Perinelli, C.
Orlando, A.
Conte, A. M.
Armienti, P.
Borrini, D.
Faccini, B.
Misiti, V.
Metasomatism induced by alkaline magma in the upper mantle of northern Victoria Land (Antarctica): an experimental approach
topic_facet Mantle
metasomatism
lherzolite
wehrlite
melt-rock reaction experiments
04. Solid Earth::04.04. Geology::04.04.05. Mineralogy and petrology
description Magma generation in the Ross Sea system is related to partial melting of strongly metasomatised mantle sources where amphibole most probably plays a crucial role. In this context, metasomatism induced by a mela-nephelinite melt in lithospheric mantle of the Mt. Melbourne Volcanic Province (northern Victoria Land – NVL, Antarctica) was investigated experimentally studying the effects of melt interaction with lherzolite at 1.5-2.0 GPa and T=975-1300°C, and wehrlite at 1.0 GPa and T=1050-1250°C. The experiments were designed to induce melt infiltration into the ultramafic rocks. The observed modifications in minerals are compared with those found in mantle xenoliths from NVL. The effects of metasomatic modifications are evaluated on the basis of run temperature, distance from the infiltrating melt and on the diffusion rates of chemical components. Both in lherzolite and wehrlite, clinopyroxene exhibits large compositional variations ranging from primary diopside to high Mg-Cr-(Na) augitic and omphacitic clinopyroxenes in lherzolite, and to low Mg and high Ti-Al-Fe-Na augites in wehrlite. Olivine (in wehrlite) and spinel (in lherzolite) also result compositionally modified, the former shows enrichments in Fe, the latter displays a higher Cr/(Cr+Al) ratio. The systematic variations in mineral compositions imply modifications of the chemistry of the infiltrating melt as recorded by the glass veinlets and patches observed in some charges. In experiments involving wehrlite paragenesis, the glass composition approaches that of melt patches associated to both amphibole-free and amphibole-bearing natural samples, and is related to olivine+clinopyroxene crystallisation coupled with primary clinopyroxene dissolution at the contact between the metasomatising melt and the solid matrix. Even if amphibole crystallisation was not attained in the experiments, we were able to explain the occurrence of amphibole in the natural system considering that in this case a hot metasomatising melt infiltrates a cooler matrix. Published ...
author2 Perinelli, C.; università di pisa
Orlando, A.; CNR IGG Firenze
Conte, A. M.; CNR IGG Roma
Armienti, P.; università di pisa
Borrini, D.; Università Firenze
Faccini, B.; Università Firenze
Misiti, V.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Roma1, Roma, Italia
università di pisa
CNR IGG Firenze
CNR IGG Roma
Università Firenze
Istituto Nazionale di Geofisica e Vulcanologia, Sezione Roma1, Roma, Italia
format Article in Journal/Newspaper
author Perinelli, C.
Orlando, A.
Conte, A. M.
Armienti, P.
Borrini, D.
Faccini, B.
Misiti, V.
author_facet Perinelli, C.
Orlando, A.
Conte, A. M.
Armienti, P.
Borrini, D.
Faccini, B.
Misiti, V.
author_sort Perinelli, C.
title Metasomatism induced by alkaline magma in the upper mantle of northern Victoria Land (Antarctica): an experimental approach
title_short Metasomatism induced by alkaline magma in the upper mantle of northern Victoria Land (Antarctica): an experimental approach
title_full Metasomatism induced by alkaline magma in the upper mantle of northern Victoria Land (Antarctica): an experimental approach
title_fullStr Metasomatism induced by alkaline magma in the upper mantle of northern Victoria Land (Antarctica): an experimental approach
title_full_unstemmed Metasomatism induced by alkaline magma in the upper mantle of northern Victoria Land (Antarctica): an experimental approach
title_sort metasomatism induced by alkaline magma in the upper mantle of northern victoria land (antarctica): an experimental approach
publisher Geological Society, London
publishDate 2008
url http://hdl.handle.net/2122/3734
http://sp.lyellcollection.org/cgi/content/abstract/293/1/279
https://doi.org/10.1144/SP293.13
geographic Ross Sea
Victoria Land
geographic_facet Ross Sea
Victoria Land
genre Antarc*
Antarctica
Ross Sea
Victoria Land
genre_facet Antarc*
Antarctica
Ross Sea
Victoria Land
op_relation Geological Society of London Special Publication
/293 (2008)
BALLHAUS, C. G., BERRY, R. F. & GREEN, D. H. 1990. Oxygen fugacity controls in the Earth’s upper mantle. Nature, 348, 437–440. BEDINI, R. M., BODINIER, J.-L., DAUTRIA, J.-M. & MORTEN, L. 1997. Evolution of LILE-enriched small melt fractions in the lithospheric mantle: a case study from the East African Rift. Earth and Planetary Science Letters, 153, 67–83. BENCE, A. E. & ALBEE, A. L. 1968. Empirical correction factors for the electron microanalysis of silicates and oxides. Journal of Geology, 76, 382–402. BODINIER, J.-L., VASSEUR, G., VERNIE` RES, J., DUPUY, C. & FABRIE` S, J. 1990. Mechanisms of mantle metasomatism: geochemical evidence from the Lhe`rz orogenic peridotite. Journal of Petrology, 31, 597–628. BOHLEN, S. R. B., ESSENE, E. J. & BOETTCHER, A. L. 1980. Reinvestigation and application of olivine– quartz–orthopyroxene barometry. Earth and Planetary Science Letters, 47, 1–10. COLTORTI, M., BECCALUVA, L., BONADIMAN, C., SALVINI, L. & SIENA, F. 2000. Glasses inmantle xenoliths as geochemical indicators of metasomatic agents. Earth and Planetary Science Letters, 183, 303–320. COLTORTI, M., BECCALUVA, L., BONADIMAN, C., FACCINI, B., NTAFLOS, T. & SIENA, F. 2004. Amphibole genesis via metasomatic reaction with clinopyroxene in mantle xenoliths from Victoria Land, Antarctica. Lithos, 75, 115–139. COLTORTI, M., BONADIMAN, C., FACCINI, B., MELCHIORRE, M., NTAFLOS, T & SIENA, F. 2006. Mantle xenoliths from Northern Land, Antarctica: evidence for heterogeneous lithospheric mantle. In: 16th Goldschmidt Conference, 27 August–1 September 2006, Melbourne, Australia, Abstracts, A108. DRAPER, D. S. & GREEN, T. H. 1997. P–T phase relation of silicic, alkaline, aluminous mantle-xenolith glasses under anhydrous and C–O–H fluid- saturated conditions. Journal of Petrology, 38, 1187–1224. DUNCUMB, P. & REED, S. J. B. 1968. The calculation of stopping power and backscatter effects in electron probe microanalysis. In: HEINRICH, K. F. J. (ed.) Quantitative Electron Probe Microanalysis. NBS Special Publications, 298, 133–154. FRANCIS, D. M. 1976. The origin of amphibole in lherzolite xenoliths from Nunivak Island, Alaska. Journal of Petrology, 17, 357–378. FREDA, C. & SCARLATO, P. 2001. La diffusione nei fusi silicatici. Quaderni di Geofisica, Istituto Nazionale di Geofisica e Vulcanologia, 14, 1–23. FREDA, C., BAKER, D. R. & OTTOLINI, L. 2001. Reduction of water loss from gold–palladium capsules during piston-cylinder experiments by use of pyrophyllite powder. American Mineralogist, 86, 234–237. HIROSE, K. & KAWAMOTO, T. 1995. Hydrous partial melting of lherzolite at 1 GPa: the effect of H2O on the genesis of basaltic magmas. Earth and Planetary Science Letters, 133, 463–473. IONOV, D. A., BODINIER, J.-L., MUKASA, S. B. & ZANETTI, A. 2002. Mechanisms and sources of mantle metasomatism: major and trace element composition of peridotite xenoliths from Spitsbergen in the context of numerical modelling. Journal of Petrology, 43, 2219–2259. IRVING, A. J., HUANG, W. L. & WYLLIE, P. J. 1977. Phase relations of portlandite, calcium hydroxide and brucite, magnesium hydroxide to 33 kilobars. American Journal of Science, 277, 313–321. KING, P. L., HERVIG, R. L., HOLLOWAY, J. R., DELANEY, J. S. & DYAR, M. D. 2000. Partitioning of Fe3þ/Fetotal between amphibole and basanitic melt as a function of oxygen fugacity. Earth and Planetary Science Letters, 178, 97–112. LE BAS, M. J., LE MAITRE, R. W., STRECKEISEN, A. & ZANETTIN, R. 1986. A chemical classification of volcanic rocks based on the total alkali–silica diagram. Journal of Petrology, 27, 745–750. LUNDSTROM, C. C. 2003. An experimental investigation of diffusive infiltration of alkalis into partially molten peridotite: implications for mantle melting processes. Geochemistry, Geophysics, Geosystems, 4, 1–25. MATSUKAGE, K. & KUBO, K. 2003. Chromian spinel during melting experiments of dry peridotite (KLB-1) at 1.0–2.5 GPa. American Mineralogist, 88, 1271–1278. MISITI, V., FREDA, C., TADDEUCCI, J., ROMANO, C., SCARLATO, P., LONGO, A., PAPALE, P. & POE, B. T. 2006. The effect of H2O on the viscosity of Ktrachytic melts at magmatic temperatures. Chemical Geology, 235, 124–137. MORGAN, Z. & LIANG, Y. 2003. An experimental and numerical study of kinetics of harzburgite reactive dissolution with applications to dunite dike formation. Earth and Planetary Science Letters, 214, 59–74. MORIMOTO, N. 1989. Nomenclature of pyroxenes. Canadian Mineralogist, 27, 143–156. NAVON, O. & STOLPER, E. 1987. Geochemical consequence of melt percolation: the upper mantle as chromatographic column. Journal of Geology, 95, 285–307. NEAL, C. R. 1988. The origin and composition of metasomatic fluids and amphiboles beneath Malaita, Solomon Islands. Journal of Petrology, 29, 149–179. NIELSEN, R. L. & DRAKE, M. J. 1979. Pyroxene-melt equilibria. Geochimica et Cosmochimica Acta, 43, 1259–1272. NIIDA, K. & GREEN, D. H. 1999. Stability and chemical composition of pargasitic amphibole in MORB pyrolite under upper mantle conditions. Contributions to Mineralogy and Petrology, 135, 18–40. O’HARA, M. J. 1968. The bearing of phase equilibria studies in synthetic and natural systems on the origin and evolution of basic and ultrabasic rocks. Earth- Science Reviews, 4, 69–133. ORLANDO, A. & BORRINI, D. 2001. Solubility of Ti in andradite under upper mantle conditions: preliminary results. Periodico di Mineralogia, 70, 99–110. ORLANDO, A., ARMIENTI, P., CONTICELLI, S., VAGGELLI, G. & MANETTI, P. 1997. Petrological investigations on the primitive Cainozoic lavas of Northern Victoria Land, Antarctica. In: RICCI, C. A. (ed.) The Antarctic Region: Geological Evolution and Processes. Terra Antartica Publications, Siena, 523–529. PERINELLI, C. & ARMIENTI, P. 2005. Pyroxenites and megacrysts in alkaline basaltic magmas from northern Victoria Land (Antarctica): constraint on the thermal evolution of sub-continental lithosphere. Ofioliti, 30, 231. PERINELLI, C., ARMIENTI, P. & DALLAI, L. 2006. Geochemical and O-isotope constraints on the evolution of lithospheric mantle in the Ross Sea rift area (Antarctica). Contributions to Mineralogy and Petrology, 151, 245–266. PETERSON, J. W. & NEWTON, R. C. 1990. Experimental biotite-quartz melting in the KMASH-CO2 system and the role of CO2 in the petrogenesis of granites and related rocks. American Mineralogist, 75, 1029–1042. PHILIBERT, J. 1963. A method for calculating the absorption correction in electron probe microanalysis. In: PATTEE, H. H., COSSLETT, V. E. & ENGSTRO¨ M, A. (eds) X-ray Optics and X-ray Microanalysis. Academic Press, New York, 379–392. RAPP, R. P., SHIMIZU, N., BORMAN, M. D. & APPLEGATE, G. S. 1999. Reaction between slabderived melts and peridotite in the mantle wedge: experimental constraints at 3.8 GPa. Chemical Geology, 160, 335–356. ROCCHI, S., ARMIENTI, P., DI VINCENZO, G., CARDINI, I., ROSSETTI, F. & STORTI, F. 2006. Tight link between Cenozoic magmatism and local-regional fault activity in the West Antarctic Rift. Terra Antartica Reports, 12, 73–80. ROCHOLL, A., STEIN, M., MOLZAHN, M., HART, S.R. & WO¨ RNER, G. 1995. Geochemical evolution of rift magmas by progressive tapping of a stratified mantle source beneath the Ross Rift, Antarctica. Earth and Planetary Science Letters, 131, 207–224. ROEDER, P. L. & EMSLIE, R. F. 1970. Olivine-liquid equilibrium. Contribution to Mineralogy and Petrology, 29, 275–289. SEN, C. & DUNN, T. 1994. Experimental modal metasomatism of a spinel lherzolite and the production of amphibole-bearing peridotite. Contributions to Mineralogy and Petrology, 119, 422–432. SHAW, C. S. J. 1999. Dissolution of orthopyroxene in basanitic magma between 0.4 and 2 GPa: further implications for the origin of Si-rich alkaline glass inclusions in mantle xenoliths. Contributions to Mineralogy and Petrology, 135, 114–132. SHAW, C. S. J., THIBAULT, Y., EDGAR, A. D. & LLOYD, F. E. 1998. Mechanisms of orthopyroxene dissolution in silica-undersaturated melts at 1 atmosphere and implications for the origin of silica-rich glass in mantle xenoliths. Contributions to Mineralogy and Petrology, 132, 354–370. SHAW, C. S. J., HEIDELBACH, F. & DINGWELL, D. B. 2006. The origin of reaction textures in mantle peridotite xenoliths from Sal Island, Cape Verde: the case for ‘metasomatism’ by the host lava. Contributions to Mineralogy and Petrology, 151, 681–697. ULMER, P. & LUTH, R. W. 1991. The graphite–COH fluid equilibrium in P, T, fO2 space; an experimental determination to 30 kbar and 1600 8C. Contributions to Mineralogy and Petrology, 106, 265–272. VAGGELLI, G., OLMI, F.& CONTICELLI, S. 1999. Quantitative electron microprobe analysis of reference silicate mineral and glass samples. Acta Vulcanologica, 11, 297–303. VERNIE` RES, J., GODARD, M. & BODINIER, J.-L. 1997. A plate model for the simulation of trace element fractionation during partial melting and magma transport in the Earth’s upper mantle. Journal of Geophysical Research, 102, 24771–24784. WALLACE, M. E. & GREEN, D. H. 1991. The efffect of bulk rock composition on the stability of amphibole in the upper mantle: implications for solidus positions and mantle metasomatism. Mineralogy and Petrology, 44, 1–19. XU, Y. G. & BODINIER, J.-L. 2004. Contrasting enrichments in high- and low-temperature mantle xenoliths from Nushan, Eastern China: results of a single metasomatic event during lithospheric accretion? Journal of Petrology, 45, 321–341.
http://hdl.handle.net/2122/3734
http://sp.lyellcollection.org/cgi/content/abstract/293/1/279
doi:10.1144/SP293.13
op_rights open
op_doi https://doi.org/10.1144/SP293.13
container_title Geological Society, London, Special Publications
container_volume 293
container_issue 1
container_start_page 279
op_container_end_page 302
_version_ 1766255655677591552
spelling ftingv:oai:www.earth-prints.org:2122/3734 2023-05-15T13:51:39+02:00 Metasomatism induced by alkaline magma in the upper mantle of northern Victoria Land (Antarctica): an experimental approach Perinelli, C. Orlando, A. Conte, A. M. Armienti, P. Borrini, D. Faccini, B. Misiti, V. Perinelli, C.; università di pisa Orlando, A.; CNR IGG Firenze Conte, A. M.; CNR IGG Roma Armienti, P.; università di pisa Borrini, D.; Università Firenze Faccini, B.; Università Firenze Misiti, V.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Roma1, Roma, Italia università di pisa CNR IGG Firenze CNR IGG Roma Università Firenze Istituto Nazionale di Geofisica e Vulcanologia, Sezione Roma1, Roma, Italia 2008 http://hdl.handle.net/2122/3734 http://sp.lyellcollection.org/cgi/content/abstract/293/1/279 https://doi.org/10.1144/SP293.13 en eng Geological Society, London Geological Society of London Special Publication /293 (2008) BALLHAUS, C. G., BERRY, R. F. & GREEN, D. H. 1990. Oxygen fugacity controls in the Earth’s upper mantle. Nature, 348, 437–440. BEDINI, R. M., BODINIER, J.-L., DAUTRIA, J.-M. & MORTEN, L. 1997. Evolution of LILE-enriched small melt fractions in the lithospheric mantle: a case study from the East African Rift. Earth and Planetary Science Letters, 153, 67–83. BENCE, A. E. & ALBEE, A. L. 1968. Empirical correction factors for the electron microanalysis of silicates and oxides. Journal of Geology, 76, 382–402. BODINIER, J.-L., VASSEUR, G., VERNIE` RES, J., DUPUY, C. & FABRIE` S, J. 1990. Mechanisms of mantle metasomatism: geochemical evidence from the Lhe`rz orogenic peridotite. Journal of Petrology, 31, 597–628. BOHLEN, S. R. B., ESSENE, E. J. & BOETTCHER, A. L. 1980. Reinvestigation and application of olivine– quartz–orthopyroxene barometry. Earth and Planetary Science Letters, 47, 1–10. COLTORTI, M., BECCALUVA, L., BONADIMAN, C., SALVINI, L. & SIENA, F. 2000. Glasses inmantle xenoliths as geochemical indicators of metasomatic agents. Earth and Planetary Science Letters, 183, 303–320. COLTORTI, M., BECCALUVA, L., BONADIMAN, C., FACCINI, B., NTAFLOS, T. & SIENA, F. 2004. Amphibole genesis via metasomatic reaction with clinopyroxene in mantle xenoliths from Victoria Land, Antarctica. Lithos, 75, 115–139. COLTORTI, M., BONADIMAN, C., FACCINI, B., MELCHIORRE, M., NTAFLOS, T & SIENA, F. 2006. Mantle xenoliths from Northern Land, Antarctica: evidence for heterogeneous lithospheric mantle. In: 16th Goldschmidt Conference, 27 August–1 September 2006, Melbourne, Australia, Abstracts, A108. DRAPER, D. S. & GREEN, T. H. 1997. P–T phase relation of silicic, alkaline, aluminous mantle-xenolith glasses under anhydrous and C–O–H fluid- saturated conditions. Journal of Petrology, 38, 1187–1224. DUNCUMB, P. & REED, S. J. B. 1968. The calculation of stopping power and backscatter effects in electron probe microanalysis. In: HEINRICH, K. F. J. (ed.) Quantitative Electron Probe Microanalysis. NBS Special Publications, 298, 133–154. FRANCIS, D. M. 1976. The origin of amphibole in lherzolite xenoliths from Nunivak Island, Alaska. Journal of Petrology, 17, 357–378. FREDA, C. & SCARLATO, P. 2001. La diffusione nei fusi silicatici. Quaderni di Geofisica, Istituto Nazionale di Geofisica e Vulcanologia, 14, 1–23. FREDA, C., BAKER, D. R. & OTTOLINI, L. 2001. Reduction of water loss from gold–palladium capsules during piston-cylinder experiments by use of pyrophyllite powder. American Mineralogist, 86, 234–237. HIROSE, K. & KAWAMOTO, T. 1995. Hydrous partial melting of lherzolite at 1 GPa: the effect of H2O on the genesis of basaltic magmas. Earth and Planetary Science Letters, 133, 463–473. IONOV, D. A., BODINIER, J.-L., MUKASA, S. B. & ZANETTI, A. 2002. Mechanisms and sources of mantle metasomatism: major and trace element composition of peridotite xenoliths from Spitsbergen in the context of numerical modelling. Journal of Petrology, 43, 2219–2259. IRVING, A. J., HUANG, W. L. & WYLLIE, P. J. 1977. Phase relations of portlandite, calcium hydroxide and brucite, magnesium hydroxide to 33 kilobars. American Journal of Science, 277, 313–321. KING, P. L., HERVIG, R. L., HOLLOWAY, J. R., DELANEY, J. S. & DYAR, M. D. 2000. Partitioning of Fe3þ/Fetotal between amphibole and basanitic melt as a function of oxygen fugacity. Earth and Planetary Science Letters, 178, 97–112. LE BAS, M. J., LE MAITRE, R. W., STRECKEISEN, A. & ZANETTIN, R. 1986. A chemical classification of volcanic rocks based on the total alkali–silica diagram. Journal of Petrology, 27, 745–750. LUNDSTROM, C. C. 2003. An experimental investigation of diffusive infiltration of alkalis into partially molten peridotite: implications for mantle melting processes. Geochemistry, Geophysics, Geosystems, 4, 1–25. MATSUKAGE, K. & KUBO, K. 2003. Chromian spinel during melting experiments of dry peridotite (KLB-1) at 1.0–2.5 GPa. American Mineralogist, 88, 1271–1278. MISITI, V., FREDA, C., TADDEUCCI, J., ROMANO, C., SCARLATO, P., LONGO, A., PAPALE, P. & POE, B. T. 2006. The effect of H2O on the viscosity of Ktrachytic melts at magmatic temperatures. Chemical Geology, 235, 124–137. MORGAN, Z. & LIANG, Y. 2003. An experimental and numerical study of kinetics of harzburgite reactive dissolution with applications to dunite dike formation. Earth and Planetary Science Letters, 214, 59–74. MORIMOTO, N. 1989. Nomenclature of pyroxenes. Canadian Mineralogist, 27, 143–156. NAVON, O. & STOLPER, E. 1987. Geochemical consequence of melt percolation: the upper mantle as chromatographic column. Journal of Geology, 95, 285–307. NEAL, C. R. 1988. The origin and composition of metasomatic fluids and amphiboles beneath Malaita, Solomon Islands. Journal of Petrology, 29, 149–179. NIELSEN, R. L. & DRAKE, M. J. 1979. Pyroxene-melt equilibria. Geochimica et Cosmochimica Acta, 43, 1259–1272. NIIDA, K. & GREEN, D. H. 1999. Stability and chemical composition of pargasitic amphibole in MORB pyrolite under upper mantle conditions. Contributions to Mineralogy and Petrology, 135, 18–40. O’HARA, M. J. 1968. The bearing of phase equilibria studies in synthetic and natural systems on the origin and evolution of basic and ultrabasic rocks. Earth- Science Reviews, 4, 69–133. ORLANDO, A. & BORRINI, D. 2001. Solubility of Ti in andradite under upper mantle conditions: preliminary results. Periodico di Mineralogia, 70, 99–110. ORLANDO, A., ARMIENTI, P., CONTICELLI, S., VAGGELLI, G. & MANETTI, P. 1997. Petrological investigations on the primitive Cainozoic lavas of Northern Victoria Land, Antarctica. In: RICCI, C. A. (ed.) The Antarctic Region: Geological Evolution and Processes. Terra Antartica Publications, Siena, 523–529. PERINELLI, C. & ARMIENTI, P. 2005. Pyroxenites and megacrysts in alkaline basaltic magmas from northern Victoria Land (Antarctica): constraint on the thermal evolution of sub-continental lithosphere. Ofioliti, 30, 231. PERINELLI, C., ARMIENTI, P. & DALLAI, L. 2006. Geochemical and O-isotope constraints on the evolution of lithospheric mantle in the Ross Sea rift area (Antarctica). Contributions to Mineralogy and Petrology, 151, 245–266. PETERSON, J. W. & NEWTON, R. C. 1990. Experimental biotite-quartz melting in the KMASH-CO2 system and the role of CO2 in the petrogenesis of granites and related rocks. American Mineralogist, 75, 1029–1042. PHILIBERT, J. 1963. A method for calculating the absorption correction in electron probe microanalysis. In: PATTEE, H. H., COSSLETT, V. E. & ENGSTRO¨ M, A. (eds) X-ray Optics and X-ray Microanalysis. Academic Press, New York, 379–392. RAPP, R. P., SHIMIZU, N., BORMAN, M. D. & APPLEGATE, G. S. 1999. Reaction between slabderived melts and peridotite in the mantle wedge: experimental constraints at 3.8 GPa. Chemical Geology, 160, 335–356. ROCCHI, S., ARMIENTI, P., DI VINCENZO, G., CARDINI, I., ROSSETTI, F. & STORTI, F. 2006. Tight link between Cenozoic magmatism and local-regional fault activity in the West Antarctic Rift. Terra Antartica Reports, 12, 73–80. ROCHOLL, A., STEIN, M., MOLZAHN, M., HART, S.R. & WO¨ RNER, G. 1995. Geochemical evolution of rift magmas by progressive tapping of a stratified mantle source beneath the Ross Rift, Antarctica. Earth and Planetary Science Letters, 131, 207–224. ROEDER, P. L. & EMSLIE, R. F. 1970. Olivine-liquid equilibrium. Contribution to Mineralogy and Petrology, 29, 275–289. SEN, C. & DUNN, T. 1994. Experimental modal metasomatism of a spinel lherzolite and the production of amphibole-bearing peridotite. Contributions to Mineralogy and Petrology, 119, 422–432. SHAW, C. S. J. 1999. Dissolution of orthopyroxene in basanitic magma between 0.4 and 2 GPa: further implications for the origin of Si-rich alkaline glass inclusions in mantle xenoliths. Contributions to Mineralogy and Petrology, 135, 114–132. SHAW, C. S. J., THIBAULT, Y., EDGAR, A. D. & LLOYD, F. E. 1998. Mechanisms of orthopyroxene dissolution in silica-undersaturated melts at 1 atmosphere and implications for the origin of silica-rich glass in mantle xenoliths. Contributions to Mineralogy and Petrology, 132, 354–370. SHAW, C. S. J., HEIDELBACH, F. & DINGWELL, D. B. 2006. The origin of reaction textures in mantle peridotite xenoliths from Sal Island, Cape Verde: the case for ‘metasomatism’ by the host lava. Contributions to Mineralogy and Petrology, 151, 681–697. ULMER, P. & LUTH, R. W. 1991. The graphite–COH fluid equilibrium in P, T, fO2 space; an experimental determination to 30 kbar and 1600 8C. Contributions to Mineralogy and Petrology, 106, 265–272. VAGGELLI, G., OLMI, F.& CONTICELLI, S. 1999. Quantitative electron microprobe analysis of reference silicate mineral and glass samples. Acta Vulcanologica, 11, 297–303. VERNIE` RES, J., GODARD, M. & BODINIER, J.-L. 1997. A plate model for the simulation of trace element fractionation during partial melting and magma transport in the Earth’s upper mantle. Journal of Geophysical Research, 102, 24771–24784. WALLACE, M. E. & GREEN, D. H. 1991. The efffect of bulk rock composition on the stability of amphibole in the upper mantle: implications for solidus positions and mantle metasomatism. Mineralogy and Petrology, 44, 1–19. XU, Y. G. & BODINIER, J.-L. 2004. Contrasting enrichments in high- and low-temperature mantle xenoliths from Nushan, Eastern China: results of a single metasomatic event during lithospheric accretion? Journal of Petrology, 45, 321–341. http://hdl.handle.net/2122/3734 http://sp.lyellcollection.org/cgi/content/abstract/293/1/279 doi:10.1144/SP293.13 open Mantle metasomatism lherzolite wehrlite melt-rock reaction experiments 04. Solid Earth::04.04. Geology::04.04.05. Mineralogy and petrology article 2008 ftingv https://doi.org/10.1144/SP293.13 2022-07-29T06:04:51Z Magma generation in the Ross Sea system is related to partial melting of strongly metasomatised mantle sources where amphibole most probably plays a crucial role. In this context, metasomatism induced by a mela-nephelinite melt in lithospheric mantle of the Mt. Melbourne Volcanic Province (northern Victoria Land – NVL, Antarctica) was investigated experimentally studying the effects of melt interaction with lherzolite at 1.5-2.0 GPa and T=975-1300°C, and wehrlite at 1.0 GPa and T=1050-1250°C. The experiments were designed to induce melt infiltration into the ultramafic rocks. The observed modifications in minerals are compared with those found in mantle xenoliths from NVL. The effects of metasomatic modifications are evaluated on the basis of run temperature, distance from the infiltrating melt and on the diffusion rates of chemical components. Both in lherzolite and wehrlite, clinopyroxene exhibits large compositional variations ranging from primary diopside to high Mg-Cr-(Na) augitic and omphacitic clinopyroxenes in lherzolite, and to low Mg and high Ti-Al-Fe-Na augites in wehrlite. Olivine (in wehrlite) and spinel (in lherzolite) also result compositionally modified, the former shows enrichments in Fe, the latter displays a higher Cr/(Cr+Al) ratio. The systematic variations in mineral compositions imply modifications of the chemistry of the infiltrating melt as recorded by the glass veinlets and patches observed in some charges. In experiments involving wehrlite paragenesis, the glass composition approaches that of melt patches associated to both amphibole-free and amphibole-bearing natural samples, and is related to olivine+clinopyroxene crystallisation coupled with primary clinopyroxene dissolution at the contact between the metasomatising melt and the solid matrix. Even if amphibole crystallisation was not attained in the experiments, we were able to explain the occurrence of amphibole in the natural system considering that in this case a hot metasomatising melt infiltrates a cooler matrix. Published ... Article in Journal/Newspaper Antarc* Antarctica Ross Sea Victoria Land Earth-Prints (Istituto Nazionale di Geofisica e Vulcanologia) Ross Sea Victoria Land Geological Society, London, Special Publications 293 1 279 302