A composite record of Late Pleistocene relative geomagnetic paleointensity from Wilkes Land Basin (Antarctica)

We report high-resolution paleomagnetic records obtained from six piston cores recovered on the continental rise of theWilkes Land Basin (WLB), East Antarctica, in the frame of the Italian/Australian Wilkes Land Glacial History (WEGA) project. The studied cores, with a length of ca. 4m each, were co...

Full description

Bibliographic Details
Published in:Physics of the Earth and Planetary Interiors
Main Authors: Macrì, P., Sagnotti, L., Dinarès-Turell, J., Caburlotto, A.
Other Authors: Macrì, P.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Roma2, Roma, Italia, Sagnotti, L.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Roma2, Roma, Italia, Dinarès-Turell, J.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Roma2, Roma, Italia, Caburlotto, A.; INOGS - Borgo Grotta Gigante 42/c, Sgonico (TS), Istituto Nazionale di Geofisica e Vulcanologia, Sezione Roma2, Roma, Italia, INOGS - Borgo Grotta Gigante 42/c, Sgonico (TS)
Format: Article in Journal/Newspaper
Language:English
Published: Elsevier 2005
Subjects:
Online Access:http://hdl.handle.net/2122/3572
https://doi.org/10.1016/j.pepi.2005.03.004
id ftingv:oai:www.earth-prints.org:2122/3572
record_format openpolar
institution Open Polar
collection Earth-Prints (Istituto Nazionale di Geofisica e Vulcanologia)
op_collection_id ftingv
language English
topic Paleomagnetism
Relative paleointensity
Geomagnetic excursions
Antarctica
Brunhes Chron
04. Solid Earth::04.05. Geomagnetism::04.05.02. Geomagnetic field variations and reversals
04. Solid Earth::04.05. Geomagnetism::04.05.05. Main geomagnetic field
spellingShingle Paleomagnetism
Relative paleointensity
Geomagnetic excursions
Antarctica
Brunhes Chron
04. Solid Earth::04.05. Geomagnetism::04.05.02. Geomagnetic field variations and reversals
04. Solid Earth::04.05. Geomagnetism::04.05.05. Main geomagnetic field
Macrì, P.
Sagnotti, L.
Dinarès-Turell, J.
Caburlotto, A.
A composite record of Late Pleistocene relative geomagnetic paleointensity from Wilkes Land Basin (Antarctica)
topic_facet Paleomagnetism
Relative paleointensity
Geomagnetic excursions
Antarctica
Brunhes Chron
04. Solid Earth::04.05. Geomagnetism::04.05.02. Geomagnetic field variations and reversals
04. Solid Earth::04.05. Geomagnetism::04.05.05. Main geomagnetic field
description We report high-resolution paleomagnetic records obtained from six piston cores recovered on the continental rise of theWilkes Land Basin (WLB), East Antarctica, in the frame of the Italian/Australian Wilkes Land Glacial History (WEGA) project. The studied cores, with a length of ca. 4m each, were collected from the gentle and steep sides of sedimentary ridges present in the lower part of the continental rise, and consist of very fine-grained sediments. Paleomagnetic measurements were carried out on u-channel samples. Apart from a low-coercivity magnetic overprint, removed after the first steps of alternating field demagnetization, each core is characterized by a well defined characteristic remanent magnetization. Paleomagnetic inclinations fluctuate around the expected value (of ca. −77◦) for such high latitude sites and always indicate normal magnetic polarity. Short period oscillations to anomalously shallow paleomagnetic inclinations (up to −20◦) were identified at different levels of the sampled sequences; positive (reverse) inclination values were however not observed. Specific rock magnetic measurements indicate a substantial homogeneity of the magnetic mineralogy in the sampled sequences. For each core we reconstructed curves of relative paleointensity (RPI, as computed by NRM20mT/κ and NRM20mT/ARM20mT) variation of the geomagnetic field. An original age modelwas established by tuning the individual RPI curves with the available global and regional reference RPI stacks. Paleomagnetic results, supported by other limited bio- and chronostratigraphic constraints, establish that all the cores are Late Pleistocene in age: two provide an expanded record of the last ca. 30 ka (PC18 and PC19), three span the last ca. 100, 200 and 300 ka (respectively, PC25, PC27 and PC26), and one reaches back to ca. 780 ka (PC20), approaching the Brunhes–Matuyama transition. Thus, the WEGA paleomagnetic record provides the first experimental data documenting the dynamics and amplitude of the geomagnetic field variations at high ...
author2 Macrì, P.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Roma2, Roma, Italia
Sagnotti, L.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Roma2, Roma, Italia
Dinarès-Turell, J.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Roma2, Roma, Italia
Caburlotto, A.; INOGS - Borgo Grotta Gigante 42/c, Sgonico (TS)
Istituto Nazionale di Geofisica e Vulcanologia, Sezione Roma2, Roma, Italia
INOGS - Borgo Grotta Gigante 42/c, Sgonico (TS)
format Article in Journal/Newspaper
author Macrì, P.
Sagnotti, L.
Dinarès-Turell, J.
Caburlotto, A.
author_facet Macrì, P.
Sagnotti, L.
Dinarès-Turell, J.
Caburlotto, A.
author_sort Macrì, P.
title A composite record of Late Pleistocene relative geomagnetic paleointensity from Wilkes Land Basin (Antarctica)
title_short A composite record of Late Pleistocene relative geomagnetic paleointensity from Wilkes Land Basin (Antarctica)
title_full A composite record of Late Pleistocene relative geomagnetic paleointensity from Wilkes Land Basin (Antarctica)
title_fullStr A composite record of Late Pleistocene relative geomagnetic paleointensity from Wilkes Land Basin (Antarctica)
title_full_unstemmed A composite record of Late Pleistocene relative geomagnetic paleointensity from Wilkes Land Basin (Antarctica)
title_sort composite record of late pleistocene relative geomagnetic paleointensity from wilkes land basin (antarctica)
publisher Elsevier
publishDate 2005
url http://hdl.handle.net/2122/3572
https://doi.org/10.1016/j.pepi.2005.03.004
long_lat ENVELOPE(120.000,120.000,-69.000,-69.000)
ENVELOPE(144.000,144.000,-65.250,-65.250)
geographic East Antarctica
Wilkes Land
Wega
geographic_facet East Antarctica
Wilkes Land
Wega
genre Antarc*
Antarctica
East Antarctica
Wilkes Land
genre_facet Antarc*
Antarctica
East Antarctica
Wilkes Land
op_relation Physics of the Earth and Planetary Interiors
/ 151 (2005)
Banerjee, S.K., King, J., Marvin, J., 1981. A rapid method for magnetic granulometry with applications to environmental studies. Geophys. Res. Lett. 8, 333–336. Benson, L.V., Liddicoat, J.C., Smoot, J.P., Sarna-Wojcicki, A., Negrini, R.M., Lund, S.P., 2003. The age of the Mono Lake excursion. Quat. Sci. Rev. 22, 135–140. Bindoff, N.L., Rosenberg, M.A., Warner, M.J., 2000. On the circulation and water masses over the Antarctic continental slope and rise between 80 and 150◦E. Deep-Sea Res. II 47, 2299– 2326. Biswas, D.K., Hyodo, M., Taniguchi, Y., Kaneko, M., Katoh, S., Sato, H., Kinugasa, Y., Mizuno, K., 1999. Magnetostratigraphy of Plio-Pleistocene sediments in a 1700-m core from Osaka Bay, southwestern Japan and short geomagnetic events in the middle Matuyama and early Brunhes chrons. Palaeogeogr. Palaeoclimatol. Palaeoecol. 148, 233–248. Brachfeld, S., Domack, E.W., Kissel, C., Laj, C., Leventer, A., Ishman, S.E., Gilbert, R., Camerlenghi, A., Eglinton, L.B., 2003. Holocene history of the Larsen ice shelf constrained by geomagnetic paleointensity dating. Geology 31, 749–752. Brachfeld, S., Kissel, C., Laj, C., Mazaud, A., 2004. Viscous behavior of U-channels during acquisition and demagnetization of remanences: implications for paleomagnetic and rock-magnetic investigations. Phys. Earth Planet. Int. 145, 1–8. Brancolini, G., Harris, P.T., 2000. Post Cruise Report AGSO Survey 217: Joint Italian/Australian Marine Geoscienze Expedition Aboard the R.V. Tangaroa to the Geotge Vth Land Region of East Antartica during February–March 2000. Australian National Antarctic Research Expeditions Project No. 1044. Wilkes Land Glacial History (WEGA), AGSO Record. Busetti, M., Caburlotto, A., Armand, L., Damiani, D., Giorgetti, G., Lucchi, R.G., Quilty, P.G., Villa, G., 2003. Plio-Quaternary sedimentation on the Wilkes Land continental rise: preliminary results. Deep-Sea Res. II 50, 1529–1562. Caburlotto, A., Macr`ı, P., Damiani, D., Giorgetti, G., Busetti, M., Villa, G., Lucchi, R.G., 2003. Piston cores from the Wilkes Land rise: data and considerations. Terra Antartica Rep. 9, 63–68. Caburlotto, A., 2003. Processi sedimentari di mare profondo sul Margine Continentale Glaciale Antartico. Ph.D. Thesis. University of Siena, Dottorato di Ricerca in Scienze Polari, XVI Ciclo, 16 dicembre 2003, 143 pp. Champion, D.E., Lanphere, M.A., Kuntz, M.A., 1988. Evidence for a new geomagnetic reversal from lava flows in Idaho: discussion of short polarity reversals in the Brunhes and late Matuyama polarity chrons. J. Geophys. Res. 93, 11667– 11680. Channell, J.E.T., Hodell, D.A., Lehman, B., 1997. Relative geomagnetic paleointensity and 18O at ODP Site 983 (Gardar Drift, North Atlantic) since 350 ka. Earth Planet. Sci. Lett. 153, 103–118. Channell, J.E.T., Stoner, J.S., Hodell, D.A., Charles, C.D., 2000. Geomagnetic paleointensity for the last 100 kyr from the subantarctic South Atlantic: a tool for inter-hemispheric correlation. Earth Planet. Sci. Lett. 175, 145–160. Channel, J.E.T., Curtis, J.H., Flower, B.P., 2004. The Matuyama- Brunhes boundary interval (500–900 ka) in North Atlantic drift sediments. Geophys. J. Int. 158, 489–505. Day, R., Fuller, M., Schmidt, V.A., 1977. Hysteresis properties of titanomagnetites: grain-size and compositional dependence. Phys. Earth Planet. Int. 13, 260–267. Dinar`es-Turell, J., Sagnotti, L., Roberts, A.P., 2002. Relative geomagnetic paleointensity from the Jaramillo subchron to the Matuyama/Brunhes boundary as recorded in a Mediterranean piston core. Earth Planet. Sci. Lett. 194, 327–341. Domack, E.W., Anderson, J.B., 1983. Marine geology of the George V continental margin: combined results of deep freeze 79 the 1914 Australian expedition. In: Oliver, R.L., James, P.R., Jago, J.B. (Eds.), Antarctic Earth Science. Australian Academy of Science, Cambridge University Press, Camberra, pp. 402– 406. Eittreim, S., Gordon, A.L., Ewing, M., Thorndike, E.M., Bruchhausen, P., 1972. The nepheloid layer and observed bottom currents in the Indian-Pacific Antarctic Sea. In: Gordon, A.L. (Ed.), Studies in Physical Oceanography. Gordon and Breach, New York, pp. 19–35. Escutia, C., Eittreim, S.L., Cooper, A.K., 1997. Cenozoic sedimentation on the Wilkes Land continental rise, Antarctica. In: Ricci, C.A. (Ed.), Proceedings of the VII International Symposium on Antarctic Earth Sciences. Terra Antarctica Publication, Siena, pp. 791–795. Gordon, A.L., Tchernia, P., 1972. Waters of the continental margin off Ad´elie coast, Antarctica. In: Hayes, D.E. (Ed.), Antarctic Oceanology II: The Australian—New Zealand Sector. Antarctic Research Series. American Geophysical Union,Washington, pp. 59–69. Guyodo, Y., Valet, J.-P., 1996. Relative variations in geomagnetic intensity from sedimentary records: the past 200,000 years. Earth Planet. Sci. Lett. 143, 23–36. Guyodo, Y., Valet, J.-P., 1999. Global changes in intensity of the Earth’s magnetic field during the past 800 kyr. Nature (London) 399, 249–252. Guyodo,Y., Richter, C.,Valet, J.-P., 1999. Paleointensity record from Pleistocene sediments (1.4–0 Ma) off the California Margin. J. Geophys. Res. 104, 22953–22964. Guyodo, Y., Acton, G.D., Brachfeld, S., Channell, J.E.T., 2001. A sedimentary paleomagnetic record of the Matuyama Chron from the western Antarctic margin (ODP Site 1101). Earth Planet. Sci. Lett. 191, 61–74. Guyodo, Y., Channell, J.E.T., Thomas Ray, G., 2002. Deconvolution of u-channel paleomagnetic data near geomagnetic reversals and short events. Geoph. Res. Lett. 29 (17), 1845, doi:10.1029/2002GL014927. Guyodo, Y., Channell, J.E.T., 2002. Effects of variable sedimentation rates and age errors on the resolution of sedimentary paleointensity records. Geochem. Geophys. Geosyst. 3 (8) (paper 1048). Hampton, M.A., Eittreim, S.L., Richmond, B.M., 1987. Postbreakup sedimentation on the Wilkes Land Margin, Antarctica. In: Eittreim, S.L., Hampton, M.A. (Eds.), The Antarctic Continental Margin: Geology and Geophysics of Offshore Wilkes Land, vol. 5A. Circum-Pacific Council for Energy and Mineral Resources. Earth Sci. Res., Houston, pp. 75–88. Harris, P.T., Brancolini, G., Armand, L., Busetti, M., Beaman, R.J., Giorgetti, G., Presti, M., Trincardi, F., 2001. Continental shelf drift deposit indicates non-steady state Antarctic bottom water production in the Holocene. Mar. Geol. 179, 1–8. Kent, D.V., Hemming, S.R., Turrin, B.D., 2002. Laschamp excursion at Mono Lake? Earth Planet. Sci. Lett. 197, 151–164. King, J.W., Banerjee, S.K., Marvin, J., O¨ zdemir, O¨ ., 1982.Acomparison of different magnetic methods for determining the relative grain size of magnetite in natural materials: some results from lake sediments. Earth Planet. Sci. Lett. 59, 404–419. King, J.W., Banerjee, S.K., Marvin, J., 1983. A new rock-magnetic approach to selecting sediments for geomagnetic paleointensity for the last 4000 years. J. Geophys. Res. 88 (7), 5911–5921. Kirschvink, J.L., 1980. The least-square line and plane and the analysis of paleomagnetic data. Geophys. J. R. Astron. Soc. 62, 699–718. Laj, C., Kissel, C., Mazaud, A., Channell, J.E.T., Beer, J., 2000. North Atlantic paleointensity stack since 75 ka (NAPIS-75) and the duration of the Laschamp event. Phil. Trans. R. Soc. London Ser. A 358, 1009–1025. Laj, C., Kissel, C., Mazaud, A., Michel, E., Muscheler, R., Beer, J., 2002. Geomagnetic field intensity, North Atlantic deep water circulation and atmospheric 14C during the last 50 kyr. Earth Planet. Sci. Lett. 200, 177–190. Langereis, C.G., Dekkers, M.J., De Lange, G.J., Patern, M.E., Van Santvoort, P.J.M., 1997. Magnetostratigraphy and astronomical calibration of the last 1.1 Myr from an eastern Mediterranean piston core and dating of short events in the Brunhes. Geophys. J. Int. 129, 75–94. Lehman, B., Laj, C., Kissel, C., Mazaud, A., Paterne, M., Labeyrie, L., 1996. Relative changes of the geomagnetic field intensity during the last 280 kyear from piston cores in the Acores area. Phys. Earth Plan. Int. 9, 269–284. Lourens, L.J., 2004. Revised tuning of Ocean Drilling Program Site 964 and KC01B (Mediterranean) and implications for the 18O, tephra, calcareous nannofossil, and geomagnetic reversal chronologies of the past 1.1 Myr. Paleoceanography 19, PA3010, doi:10.1029/2003PA000997. Lund, S.P., Acton, G., Clement, B., Hastedt, M., Okada, M., Williams, R., 1998. Geomagnetic field excursions occurred often during the last million years. EOS, Trans. Am. Geophys. Un. 79, 178–179. McMillan, D.G., Constable, C.G., Parker, R.L., 2004. Assessing the dipolar signal in stacked paleointensity records using a statistical error model and geodynamo simulations. Phys. Earth Plan. Int. 145, 37–54. Meynadier, L., Valet, J.-P.,Weeks, R., Shackleton, N.J., Hagee, V.L., 1992. Relative geomagnetic intensity of the field during the last 140 ka. Earth Planet. Sci. Lett. 114, 39–57. Oda, H., Shibuya, H., 1996. Deconvolution of long-core paleomagnetic data of Ocean Drilling Program by Akaike’s Bayesian Information Criterion minimization. J. Geophys. Res. 101, 2815–2834. Paillard, D., Labeyrie, L., Yiou, P., 1996. Macintosh program performs time-series analysis. Eos, Trans. Am. Geophys. Un. 77, 397. Quidelleur, X., Gillot, P.-Y., Carlut, J., Courtillot, V., 1999. Link between excursions and paleointensity inferred from abnormal field directions recorded at la Palma around 600 ka. Earth Planet. Sci. Lett. 168, 233–242. Quidelleur, X., Carlut, J., Soler, V., Valet, J.-P., Gillot, P.-Y., 2003. The age and duration of the Matuyama-Brunhes transition from new K-Ar data from La Palma (Canary Islands) and revisited 40Ar/39Ar ages. Earth Planet. Sci. Lett. 208, 149–163. Rebesco, M., Larter, R.D., Camerlenghi, A., Barker, P.F., 1996. Giant sediment drifts on the continental rise west of the Antarctic Peninsula. Geo-Mar. Lett. 16, 65–75. Rebesco, M., Larter, R.D., Barker, P.F., Camerlenghi, A., Vanneste, L.E., 1997. The history of sedimentation on the continental rise west of the Antarctic Peninsula. In: Cooper, A.K., Barker, P.F. (Eds.), Geology and Seismic Stratigraphy of The Antarctic Margin, Part 2. Antarctic Research Series, vol. 71. American Geophysical Union, Washington, DC, pp. 29–49. Rintoul, S.R., 1998. On the origin and influence of Adelaide land bottom water. in: Jacobs, S.S. (Ed.). Ocean Ice and Atmosphere: Interaction at the Antarctic Continental Margin. Antarctic Research Series, vol. 75, pp. 151–171. Roberts, A.P., Winklhofer, M., 2004. Why are geomagnetic excursions not always recorded in sediments? Constraints from postdepositional remanent magnetization lock-in modelling. Earth Planet. Sci. Lett. 227 (3–4), 345–359. Sagnotti, L., Macr`ı, P., Camerlenghi, A., Rebesco, M., 2001. Environmental magnetism of Late Pleistocene sediments from the pacific margin of the Antarctic Peninsula and interhemispheric correlation of climatic events. Earth Planet. Sci. Lett. 192, 65–80. Sagnotti, L., Rochette, P., Jackson, M., Vadeboin, F., Dinar`es-Turell, J., Winkler, A., Mag-Net Science Team, 2003. Inter-laboratory calibration of low field (K) and anhysteretic (Ka) susceptibility measurements. Phys. Earth Planet. Int. 138, 25–38. Singer, B.S., Relle, M.K., Hoffman, K.A., Battle, A., Laj, C., Guillou, H., Carracedo, J.C., 2002. Ar/Ar ages from transitionally magnetized lavas on La Palma, Canary Islands, and the geomagnetic instability timescale. J. Geophys. Res. 107 (B11), 2307, doi:10.1029/2001JB001613. Stacey, F.D., Banerjee, S.K., 1974. The Physical Principles of Rock Magnetism. Elsevier, New York, 195 pp. Stoner, J.S., Channell, J.E.T., Hillairie-Marcel, C., 1995. Late Pleistocene relative geomagnetic paleointensity from the deep Labrador sea: regional and global correlations. Earth Planet. Sci. Lett. 134, 237–252. Stoner, J.S., Channell, J.E.T., Hillairie-Marcel, C., Kissel, C., 2000. Geomagnetic paleointensity and environmental record from Labrador Sea core MD95-2024: global marine sediment and ice core chronostratigraphy for the last 110 kyr. Earth Planet. Sci. Lett. 183, 161–177. Stoner, J.S., Laj, C., Channell, J.E.T., Kissel, C., 2002. South Atlantic (SAPIS) and North Atlantic (NAPIS) geomagnetic paleointensity stacks (0–80 ka): implications for inter-hemispheric correlation. Quat. Sci. Rev. 21, 1142–1151. Tauxe, L.,Wu, G., 1990. Normalized remanence in sediments of the Western Equatorial Pacific, relative paleointensity of the geomagnetic field? J. Geophys. Res. 95, 12337–12350. Tauxe, L., 1993. Sedimentary records of relative paleointensity of the geomagnetic field: theory and practice. Rev. Geophys. 31, 319–354. Tauxe, L., Shackleton, N.J., 1994. Relative paleointensity records from the Ontong-Java Plateau. Geophys. J. Int. 117, 769–782. Thouveny, N., Carcaillet, J., Moreno, E., Leduc, G., Nerini, D., 2004. Geomagnetic moment variation and paleomagnetic excursions since 400 kyr BP: a stacked record from sedimentary sequences of the Portuguese margin. Earth Planet. Sci. Lett. 219, 377– 396. Tric, E., Valet, J.-P., Tucholka, P., Parterne, M., Labeyrie, L., Guichard, F., Tauxe, L., Fontune, M., 1992. Paleointensity of the geomagnetic field during the last eighty thousand years. J. Geophys. Res. 97 (B6), 9337–9351. Valet, J.-P., Meynadier, L., 1993. Geomagnetic field intensity and reversals during the past four million years. Nature 366, 234– 238. Valet, J.-P., Meynadier, L., Bassinot, F.C., Garnier, F., 1994. Relative paleointensity across the last geomagnetic reversal from sediments of the Atlanctic, Indian and Pacific Oceans. Geophys. Res. Lett. 21, 485–488. Valet, J.-P., Meynadier, L., 1998. A comparison of different techniques for relative paleointensity. Geophys. Res. Lett. 25, 89–92. Yamazaki, T., Ioka, N., Eguchi, N., 1995. Relative paleointensity of the geomagnetic field during the Brunhes Chron. Earth Planet. Sci. Lett. 136, 525–540.
http://hdl.handle.net/2122/3572
doi:10.1016/j.pepi.2005.03.004
op_rights restricted
op_doi https://doi.org/10.1016/j.pepi.2005.03.004
https://doi.org/10.1029/2002GL014927
container_title Physics of the Earth and Planetary Interiors
container_volume 151
container_issue 3-4
container_start_page 223
op_container_end_page 242
_version_ 1766255655033765888
spelling ftingv:oai:www.earth-prints.org:2122/3572 2023-05-15T13:51:39+02:00 A composite record of Late Pleistocene relative geomagnetic paleointensity from Wilkes Land Basin (Antarctica) Macrì, P. Sagnotti, L. Dinarès-Turell, J. Caburlotto, A. Macrì, P.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Roma2, Roma, Italia Sagnotti, L.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Roma2, Roma, Italia Dinarès-Turell, J.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Roma2, Roma, Italia Caburlotto, A.; INOGS - Borgo Grotta Gigante 42/c, Sgonico (TS) Istituto Nazionale di Geofisica e Vulcanologia, Sezione Roma2, Roma, Italia INOGS - Borgo Grotta Gigante 42/c, Sgonico (TS) 2005 http://hdl.handle.net/2122/3572 https://doi.org/10.1016/j.pepi.2005.03.004 en eng Elsevier Physics of the Earth and Planetary Interiors / 151 (2005) Banerjee, S.K., King, J., Marvin, J., 1981. A rapid method for magnetic granulometry with applications to environmental studies. Geophys. Res. Lett. 8, 333–336. Benson, L.V., Liddicoat, J.C., Smoot, J.P., Sarna-Wojcicki, A., Negrini, R.M., Lund, S.P., 2003. The age of the Mono Lake excursion. Quat. Sci. Rev. 22, 135–140. Bindoff, N.L., Rosenberg, M.A., Warner, M.J., 2000. On the circulation and water masses over the Antarctic continental slope and rise between 80 and 150◦E. Deep-Sea Res. II 47, 2299– 2326. Biswas, D.K., Hyodo, M., Taniguchi, Y., Kaneko, M., Katoh, S., Sato, H., Kinugasa, Y., Mizuno, K., 1999. Magnetostratigraphy of Plio-Pleistocene sediments in a 1700-m core from Osaka Bay, southwestern Japan and short geomagnetic events in the middle Matuyama and early Brunhes chrons. Palaeogeogr. Palaeoclimatol. Palaeoecol. 148, 233–248. Brachfeld, S., Domack, E.W., Kissel, C., Laj, C., Leventer, A., Ishman, S.E., Gilbert, R., Camerlenghi, A., Eglinton, L.B., 2003. Holocene history of the Larsen ice shelf constrained by geomagnetic paleointensity dating. Geology 31, 749–752. Brachfeld, S., Kissel, C., Laj, C., Mazaud, A., 2004. Viscous behavior of U-channels during acquisition and demagnetization of remanences: implications for paleomagnetic and rock-magnetic investigations. Phys. Earth Planet. Int. 145, 1–8. Brancolini, G., Harris, P.T., 2000. Post Cruise Report AGSO Survey 217: Joint Italian/Australian Marine Geoscienze Expedition Aboard the R.V. Tangaroa to the Geotge Vth Land Region of East Antartica during February–March 2000. Australian National Antarctic Research Expeditions Project No. 1044. Wilkes Land Glacial History (WEGA), AGSO Record. Busetti, M., Caburlotto, A., Armand, L., Damiani, D., Giorgetti, G., Lucchi, R.G., Quilty, P.G., Villa, G., 2003. Plio-Quaternary sedimentation on the Wilkes Land continental rise: preliminary results. Deep-Sea Res. II 50, 1529–1562. Caburlotto, A., Macr`ı, P., Damiani, D., Giorgetti, G., Busetti, M., Villa, G., Lucchi, R.G., 2003. Piston cores from the Wilkes Land rise: data and considerations. Terra Antartica Rep. 9, 63–68. Caburlotto, A., 2003. Processi sedimentari di mare profondo sul Margine Continentale Glaciale Antartico. Ph.D. Thesis. University of Siena, Dottorato di Ricerca in Scienze Polari, XVI Ciclo, 16 dicembre 2003, 143 pp. Champion, D.E., Lanphere, M.A., Kuntz, M.A., 1988. Evidence for a new geomagnetic reversal from lava flows in Idaho: discussion of short polarity reversals in the Brunhes and late Matuyama polarity chrons. J. Geophys. Res. 93, 11667– 11680. Channell, J.E.T., Hodell, D.A., Lehman, B., 1997. Relative geomagnetic paleointensity and 18O at ODP Site 983 (Gardar Drift, North Atlantic) since 350 ka. Earth Planet. Sci. Lett. 153, 103–118. Channell, J.E.T., Stoner, J.S., Hodell, D.A., Charles, C.D., 2000. Geomagnetic paleointensity for the last 100 kyr from the subantarctic South Atlantic: a tool for inter-hemispheric correlation. Earth Planet. Sci. Lett. 175, 145–160. Channel, J.E.T., Curtis, J.H., Flower, B.P., 2004. The Matuyama- Brunhes boundary interval (500–900 ka) in North Atlantic drift sediments. Geophys. J. Int. 158, 489–505. Day, R., Fuller, M., Schmidt, V.A., 1977. Hysteresis properties of titanomagnetites: grain-size and compositional dependence. Phys. Earth Planet. Int. 13, 260–267. Dinar`es-Turell, J., Sagnotti, L., Roberts, A.P., 2002. Relative geomagnetic paleointensity from the Jaramillo subchron to the Matuyama/Brunhes boundary as recorded in a Mediterranean piston core. Earth Planet. Sci. Lett. 194, 327–341. Domack, E.W., Anderson, J.B., 1983. Marine geology of the George V continental margin: combined results of deep freeze 79 the 1914 Australian expedition. In: Oliver, R.L., James, P.R., Jago, J.B. (Eds.), Antarctic Earth Science. Australian Academy of Science, Cambridge University Press, Camberra, pp. 402– 406. Eittreim, S., Gordon, A.L., Ewing, M., Thorndike, E.M., Bruchhausen, P., 1972. The nepheloid layer and observed bottom currents in the Indian-Pacific Antarctic Sea. In: Gordon, A.L. (Ed.), Studies in Physical Oceanography. Gordon and Breach, New York, pp. 19–35. Escutia, C., Eittreim, S.L., Cooper, A.K., 1997. Cenozoic sedimentation on the Wilkes Land continental rise, Antarctica. In: Ricci, C.A. (Ed.), Proceedings of the VII International Symposium on Antarctic Earth Sciences. Terra Antarctica Publication, Siena, pp. 791–795. Gordon, A.L., Tchernia, P., 1972. Waters of the continental margin off Ad´elie coast, Antarctica. In: Hayes, D.E. (Ed.), Antarctic Oceanology II: The Australian—New Zealand Sector. Antarctic Research Series. American Geophysical Union,Washington, pp. 59–69. Guyodo, Y., Valet, J.-P., 1996. Relative variations in geomagnetic intensity from sedimentary records: the past 200,000 years. Earth Planet. Sci. Lett. 143, 23–36. Guyodo, Y., Valet, J.-P., 1999. Global changes in intensity of the Earth’s magnetic field during the past 800 kyr. Nature (London) 399, 249–252. Guyodo,Y., Richter, C.,Valet, J.-P., 1999. Paleointensity record from Pleistocene sediments (1.4–0 Ma) off the California Margin. J. Geophys. Res. 104, 22953–22964. Guyodo, Y., Acton, G.D., Brachfeld, S., Channell, J.E.T., 2001. A sedimentary paleomagnetic record of the Matuyama Chron from the western Antarctic margin (ODP Site 1101). Earth Planet. Sci. Lett. 191, 61–74. Guyodo, Y., Channell, J.E.T., Thomas Ray, G., 2002. Deconvolution of u-channel paleomagnetic data near geomagnetic reversals and short events. Geoph. Res. Lett. 29 (17), 1845, doi:10.1029/2002GL014927. Guyodo, Y., Channell, J.E.T., 2002. Effects of variable sedimentation rates and age errors on the resolution of sedimentary paleointensity records. Geochem. Geophys. Geosyst. 3 (8) (paper 1048). Hampton, M.A., Eittreim, S.L., Richmond, B.M., 1987. Postbreakup sedimentation on the Wilkes Land Margin, Antarctica. In: Eittreim, S.L., Hampton, M.A. (Eds.), The Antarctic Continental Margin: Geology and Geophysics of Offshore Wilkes Land, vol. 5A. Circum-Pacific Council for Energy and Mineral Resources. Earth Sci. Res., Houston, pp. 75–88. Harris, P.T., Brancolini, G., Armand, L., Busetti, M., Beaman, R.J., Giorgetti, G., Presti, M., Trincardi, F., 2001. Continental shelf drift deposit indicates non-steady state Antarctic bottom water production in the Holocene. Mar. Geol. 179, 1–8. Kent, D.V., Hemming, S.R., Turrin, B.D., 2002. Laschamp excursion at Mono Lake? Earth Planet. Sci. Lett. 197, 151–164. King, J.W., Banerjee, S.K., Marvin, J., O¨ zdemir, O¨ ., 1982.Acomparison of different magnetic methods for determining the relative grain size of magnetite in natural materials: some results from lake sediments. Earth Planet. Sci. Lett. 59, 404–419. King, J.W., Banerjee, S.K., Marvin, J., 1983. A new rock-magnetic approach to selecting sediments for geomagnetic paleointensity for the last 4000 years. J. Geophys. Res. 88 (7), 5911–5921. Kirschvink, J.L., 1980. The least-square line and plane and the analysis of paleomagnetic data. Geophys. J. R. Astron. Soc. 62, 699–718. Laj, C., Kissel, C., Mazaud, A., Channell, J.E.T., Beer, J., 2000. North Atlantic paleointensity stack since 75 ka (NAPIS-75) and the duration of the Laschamp event. Phil. Trans. R. Soc. London Ser. A 358, 1009–1025. Laj, C., Kissel, C., Mazaud, A., Michel, E., Muscheler, R., Beer, J., 2002. Geomagnetic field intensity, North Atlantic deep water circulation and atmospheric 14C during the last 50 kyr. Earth Planet. Sci. Lett. 200, 177–190. Langereis, C.G., Dekkers, M.J., De Lange, G.J., Patern, M.E., Van Santvoort, P.J.M., 1997. Magnetostratigraphy and astronomical calibration of the last 1.1 Myr from an eastern Mediterranean piston core and dating of short events in the Brunhes. Geophys. J. Int. 129, 75–94. Lehman, B., Laj, C., Kissel, C., Mazaud, A., Paterne, M., Labeyrie, L., 1996. Relative changes of the geomagnetic field intensity during the last 280 kyear from piston cores in the Acores area. Phys. Earth Plan. Int. 9, 269–284. Lourens, L.J., 2004. Revised tuning of Ocean Drilling Program Site 964 and KC01B (Mediterranean) and implications for the 18O, tephra, calcareous nannofossil, and geomagnetic reversal chronologies of the past 1.1 Myr. Paleoceanography 19, PA3010, doi:10.1029/2003PA000997. Lund, S.P., Acton, G., Clement, B., Hastedt, M., Okada, M., Williams, R., 1998. Geomagnetic field excursions occurred often during the last million years. EOS, Trans. Am. Geophys. Un. 79, 178–179. McMillan, D.G., Constable, C.G., Parker, R.L., 2004. Assessing the dipolar signal in stacked paleointensity records using a statistical error model and geodynamo simulations. Phys. Earth Plan. Int. 145, 37–54. Meynadier, L., Valet, J.-P.,Weeks, R., Shackleton, N.J., Hagee, V.L., 1992. Relative geomagnetic intensity of the field during the last 140 ka. Earth Planet. Sci. Lett. 114, 39–57. Oda, H., Shibuya, H., 1996. Deconvolution of long-core paleomagnetic data of Ocean Drilling Program by Akaike’s Bayesian Information Criterion minimization. J. Geophys. Res. 101, 2815–2834. Paillard, D., Labeyrie, L., Yiou, P., 1996. Macintosh program performs time-series analysis. Eos, Trans. Am. Geophys. Un. 77, 397. Quidelleur, X., Gillot, P.-Y., Carlut, J., Courtillot, V., 1999. Link between excursions and paleointensity inferred from abnormal field directions recorded at la Palma around 600 ka. Earth Planet. Sci. Lett. 168, 233–242. Quidelleur, X., Carlut, J., Soler, V., Valet, J.-P., Gillot, P.-Y., 2003. The age and duration of the Matuyama-Brunhes transition from new K-Ar data from La Palma (Canary Islands) and revisited 40Ar/39Ar ages. Earth Planet. Sci. Lett. 208, 149–163. Rebesco, M., Larter, R.D., Camerlenghi, A., Barker, P.F., 1996. Giant sediment drifts on the continental rise west of the Antarctic Peninsula. Geo-Mar. Lett. 16, 65–75. Rebesco, M., Larter, R.D., Barker, P.F., Camerlenghi, A., Vanneste, L.E., 1997. The history of sedimentation on the continental rise west of the Antarctic Peninsula. In: Cooper, A.K., Barker, P.F. (Eds.), Geology and Seismic Stratigraphy of The Antarctic Margin, Part 2. Antarctic Research Series, vol. 71. American Geophysical Union, Washington, DC, pp. 29–49. Rintoul, S.R., 1998. On the origin and influence of Adelaide land bottom water. in: Jacobs, S.S. (Ed.). Ocean Ice and Atmosphere: Interaction at the Antarctic Continental Margin. Antarctic Research Series, vol. 75, pp. 151–171. Roberts, A.P., Winklhofer, M., 2004. Why are geomagnetic excursions not always recorded in sediments? Constraints from postdepositional remanent magnetization lock-in modelling. Earth Planet. Sci. Lett. 227 (3–4), 345–359. Sagnotti, L., Macr`ı, P., Camerlenghi, A., Rebesco, M., 2001. Environmental magnetism of Late Pleistocene sediments from the pacific margin of the Antarctic Peninsula and interhemispheric correlation of climatic events. Earth Planet. Sci. Lett. 192, 65–80. Sagnotti, L., Rochette, P., Jackson, M., Vadeboin, F., Dinar`es-Turell, J., Winkler, A., Mag-Net Science Team, 2003. Inter-laboratory calibration of low field (K) and anhysteretic (Ka) susceptibility measurements. Phys. Earth Planet. Int. 138, 25–38. Singer, B.S., Relle, M.K., Hoffman, K.A., Battle, A., Laj, C., Guillou, H., Carracedo, J.C., 2002. Ar/Ar ages from transitionally magnetized lavas on La Palma, Canary Islands, and the geomagnetic instability timescale. J. Geophys. Res. 107 (B11), 2307, doi:10.1029/2001JB001613. Stacey, F.D., Banerjee, S.K., 1974. The Physical Principles of Rock Magnetism. Elsevier, New York, 195 pp. Stoner, J.S., Channell, J.E.T., Hillairie-Marcel, C., 1995. Late Pleistocene relative geomagnetic paleointensity from the deep Labrador sea: regional and global correlations. Earth Planet. Sci. Lett. 134, 237–252. Stoner, J.S., Channell, J.E.T., Hillairie-Marcel, C., Kissel, C., 2000. Geomagnetic paleointensity and environmental record from Labrador Sea core MD95-2024: global marine sediment and ice core chronostratigraphy for the last 110 kyr. Earth Planet. Sci. Lett. 183, 161–177. Stoner, J.S., Laj, C., Channell, J.E.T., Kissel, C., 2002. South Atlantic (SAPIS) and North Atlantic (NAPIS) geomagnetic paleointensity stacks (0–80 ka): implications for inter-hemispheric correlation. Quat. Sci. Rev. 21, 1142–1151. Tauxe, L.,Wu, G., 1990. Normalized remanence in sediments of the Western Equatorial Pacific, relative paleointensity of the geomagnetic field? J. Geophys. Res. 95, 12337–12350. Tauxe, L., 1993. Sedimentary records of relative paleointensity of the geomagnetic field: theory and practice. Rev. Geophys. 31, 319–354. Tauxe, L., Shackleton, N.J., 1994. Relative paleointensity records from the Ontong-Java Plateau. Geophys. J. Int. 117, 769–782. Thouveny, N., Carcaillet, J., Moreno, E., Leduc, G., Nerini, D., 2004. Geomagnetic moment variation and paleomagnetic excursions since 400 kyr BP: a stacked record from sedimentary sequences of the Portuguese margin. Earth Planet. Sci. Lett. 219, 377– 396. Tric, E., Valet, J.-P., Tucholka, P., Parterne, M., Labeyrie, L., Guichard, F., Tauxe, L., Fontune, M., 1992. Paleointensity of the geomagnetic field during the last eighty thousand years. J. Geophys. Res. 97 (B6), 9337–9351. Valet, J.-P., Meynadier, L., 1993. Geomagnetic field intensity and reversals during the past four million years. Nature 366, 234– 238. Valet, J.-P., Meynadier, L., Bassinot, F.C., Garnier, F., 1994. Relative paleointensity across the last geomagnetic reversal from sediments of the Atlanctic, Indian and Pacific Oceans. Geophys. Res. Lett. 21, 485–488. Valet, J.-P., Meynadier, L., 1998. A comparison of different techniques for relative paleointensity. Geophys. Res. Lett. 25, 89–92. Yamazaki, T., Ioka, N., Eguchi, N., 1995. Relative paleointensity of the geomagnetic field during the Brunhes Chron. Earth Planet. Sci. Lett. 136, 525–540. http://hdl.handle.net/2122/3572 doi:10.1016/j.pepi.2005.03.004 restricted Paleomagnetism Relative paleointensity Geomagnetic excursions Antarctica Brunhes Chron 04. Solid Earth::04.05. Geomagnetism::04.05.02. Geomagnetic field variations and reversals 04. Solid Earth::04.05. Geomagnetism::04.05.05. Main geomagnetic field article 2005 ftingv https://doi.org/10.1016/j.pepi.2005.03.004 https://doi.org/10.1029/2002GL014927 2022-07-29T06:04:49Z We report high-resolution paleomagnetic records obtained from six piston cores recovered on the continental rise of theWilkes Land Basin (WLB), East Antarctica, in the frame of the Italian/Australian Wilkes Land Glacial History (WEGA) project. The studied cores, with a length of ca. 4m each, were collected from the gentle and steep sides of sedimentary ridges present in the lower part of the continental rise, and consist of very fine-grained sediments. Paleomagnetic measurements were carried out on u-channel samples. Apart from a low-coercivity magnetic overprint, removed after the first steps of alternating field demagnetization, each core is characterized by a well defined characteristic remanent magnetization. Paleomagnetic inclinations fluctuate around the expected value (of ca. −77◦) for such high latitude sites and always indicate normal magnetic polarity. Short period oscillations to anomalously shallow paleomagnetic inclinations (up to −20◦) were identified at different levels of the sampled sequences; positive (reverse) inclination values were however not observed. Specific rock magnetic measurements indicate a substantial homogeneity of the magnetic mineralogy in the sampled sequences. For each core we reconstructed curves of relative paleointensity (RPI, as computed by NRM20mT/κ and NRM20mT/ARM20mT) variation of the geomagnetic field. An original age modelwas established by tuning the individual RPI curves with the available global and regional reference RPI stacks. Paleomagnetic results, supported by other limited bio- and chronostratigraphic constraints, establish that all the cores are Late Pleistocene in age: two provide an expanded record of the last ca. 30 ka (PC18 and PC19), three span the last ca. 100, 200 and 300 ka (respectively, PC25, PC27 and PC26), and one reaches back to ca. 780 ka (PC20), approaching the Brunhes–Matuyama transition. Thus, the WEGA paleomagnetic record provides the first experimental data documenting the dynamics and amplitude of the geomagnetic field variations at high ... Article in Journal/Newspaper Antarc* Antarctica East Antarctica Wilkes Land Earth-Prints (Istituto Nazionale di Geofisica e Vulcanologia) East Antarctica Wilkes Land ENVELOPE(120.000,120.000,-69.000,-69.000) Wega ENVELOPE(144.000,144.000,-65.250,-65.250) Physics of the Earth and Planetary Interiors 151 3-4 223 242